学文网

四年级下册《三角形内角和》的教学设计(通用五篇)

时间:2023-08-19 12:51:38 文/王明刚老师 教学设计学文网www.xuewenya.com

  四年级下册《三角形内角和》的教学设计1

  【教学目标】

  1.使学生知道三角形的内角和是180,并能运用三角形的内角和是180解决生活中常见的问题。

  2.让学生经历量一量、折一折、拼一拼等动手操作的过程。通过观察、判断、交流和推理探索用多种方法证明三角形的内角和是180。

  3.培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。

  【教学重点】

  使学生知道三角形的内角和是180,并能运用它解决生活中常见的问题。

  【教学难点】

  通过多种方法验证三角形的内角和是180。

  【教学准备】

  课件。四组教学用三角板。铅笔。大帆布兜子。固体胶。剪刀。筷子若干。

  【教学过程】

  一、激趣导入,提炼学习方法

  1.课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。激发学生的好奇心。然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”

  2.继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。

  3.选择工具,总结方法。

  让选择不同工具的同学用自己的方法验证。教师随机板书:量一量、拼一拼、折一折。

  师:你们真是爱动脑筋的好徒弟,那么请听好师傅的第二个问题。

  4.导入新课。

  图中有很多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜欢的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)

  二、动手操作,探索交流新知

  1.分组活动,探索新知

  根据学生的选择把学生分成三组,分别采用量一量、折一折和拼一拼的方法探索新知。

  量一量组同学发给以下几种学具:

  折一折组同学发给上面的三角形一组。

  拼一拼组同学发给上面的三角形一组、剪刀一把还有下面这样的白纸一张。

  在学生探索的过程中教师要走近学生,与他们共同交流探讨,在学生有困难的时候要适当给予引导。

  2.多方互动,交流新知

  师:请我的大徒弟(量一量组)的同学先来汇报你们的研究成果。

  (1)首先要求学生说一说你们小组是怎样进行探究的。

  (2)说出你们组的探究结果怎样。(在此过程中教师不能急于纠正学生不正确的结论,因为这是知识的形成过程。)

  (3)请学生说说通过探究活动你们组得出的结论是什么。

  师:大徒弟就是大徒弟,汇报的真不错。二徒弟(折一折组)你们有没有更好的办法呢?

  引导这一组从探究的过程和结论与同学、老师交流。

  师:别看小徒弟(拼一拼组)这么小,方法可能是最好的。快来把你们的方法给大家汇报汇报。

  同样引导这一组从探究的过程和结论与同学、老师交流。

  3.思想碰撞,夯实新知

  师:三个徒弟你们能说说谁的方法最好吗?

  学生都会说自己的方法最好,再让其他同学发表自己的意见,此时生生之间,师生之间交流。(教师要引导学生说出量一量的方法可能由于量的不够准确,所以结果可能比180大一些,或小一些。而其他两种方法没有改变角的大小,所以他们的是正确的。)

  师:不论你量的怎样认真都会有不准确的地方,这就叫误差。而其他两组同学的方法更准确。三角形的内角和就是180。(板书:三角形的内角和是180)

  四、走进生活,提升运用能力

  1.出示课前那架柁标出它的顶角是120,求它的一个底角是多少度?

  2.给你三根木条,能做出一个有两个直角的三角形吗?

  五、总结

  师:徒弟们你们经过三年的苦学,终于学有所成了。今天,能说说你们在我这里都学到了什么手艺吗?

  六、拓展新知,课外延伸

  师:俗话说“活到老,学到老。”你们下山后还要继续探索,所以我要把我毕生都没有完成的任务交给你们去研究。

  大屏幕出示:

  能用你今天学过的知识和方法探索一下四边形的内角和是多少度吗?

  四年级下册《三角形内角和》的教学设计2

  教学目标:

  1、让学生通过量、剪、拼、折等活动,主动探究推导出三角形内角和是180度,并运用所学知识解决简单的实际问题。

  2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透"转化"数学思想。

  3、在学生亲自动手和归纳中,使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

  教学重点:

  让学生经历"三角形内角和是180°"这一知识的形成、发展和应用的全过程。

  教学难点:

  通过小组内量一量、折一折、撕一撕等活动,验证"三角形的内角和是180°。"

  教师准备:

  4组学具、课件

  学生准备:

  量角器、练习本

  教学过程:

  一、兴趣导入,揭示课题

  1、导入:"同学们,这几天我们都在研究什么知识?能说说你们都认识了哪些三角形吗?它们各有什么特点?"

  (生出示三角形并汇报各类三角形及特点)

  2、今天老师也带来了两个三角形,想不想看看?(播放大屏幕)。"咦,不好,它们怎么吵起来了?快听听它们为什么吵起来了?""哦,它们为了三个内角和的大小而吵起来。"(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

  3、我们来帮帮它们好吗?

  4、那么什么叫内角啊?你们明白吗?谁来说说?来指指。

  你能标出三角形的三个角吗?(生快速标好)

  数学中把三角形的这三个角称为三角形的内角,三个内角加起来就叫内角和。这节课我们就来研究一下"三角形的内角和"(课件片头1)

  "同学们,用什么方法能知道三角形的内角和?"

  二、猜想验证,探究规律(动手操作,探究新知)

  1.量角求和法证明:

  先听合作要求:拿出准备的一大一小的两个三角形,现在我们以小组为单位来量一量它们的内角,注意分工:最好两个人量,一人记录,一人计算,看哪一小组完成的好?

  (1)学生听合作要求后分组合作,将各种三角形的内角和计算出来并填在小组活动记录表中。(观察哪组配合好)。

  (2)指名汇报各组度量和计算内角和的结果。

  (3)观察:从大家量、算的结果中,你发现什么?

  归纳:大家算出的三角形内角和都等于或接近180°。

  (5)思考、讨论:

  通过测量计算,我们发现三角形的内角和不一定等于180度,因为是测量所以能有误差,那么还有更好的方法能验证呢?

  大家讨论讨论。

  现在各小组就行动起来吧,看哪些小组的方法巧妙。看看能得出什么结论?

  看同学们拼得这样开心,老师也想拼拼,行吗?演示课件。

  看老师最终把三个角拼成了一个什么角?平角。是多少角?

  "180°是一个什么角?想一想,怎样可以把三角形的三个内角拼在一起?如果拼成一个180度的平角就可以验证这个结论,对吗?"(课件3)

  现在,我们可验证三角形的内角和是(180度)?

  2、那么对任意三角形都是这个结论?请看大屏幕。

  演示锐角三角形折角。(三个顶点重合后是一个平角,折好后是一个长方形。)

  你们想不想去试一试。

  1、小组探究活动,师巡视过程中加入探究、指导(如生有困难,师可引导、有可能出现折不到一起的情况,可演示以帮助学生)

  2、"你通过哪种三角形验证(钝角、锐角、直角逐一汇报)",生边出示三角形边汇报。(如有实物投影,直接在实物投影上展示最好,也可用大三角形示范,可随机改变顺序)

  a、验证直角三角形的内角和

  折法1中三个角拼在一起组成了一个什么角?我们可以得出什么结论?

  引导生归纳出:直角三角形的内角和是180°

  折法2我们还可以得出什么结论?

  引导生归纳出:直角三角形中两个锐角的和是90°。

  (即:不必三个角都折,锐角向直角方向折,两个锐角拼成直角与直角重合即可)

  b、验证锐角、钝角三角形的内角和。

  归纳:锐角、钝角三角形的内角和也是180°。

  放手发动学生独立完成,逐一种类汇报师给予鼓励

  三、总结规律

  刚才,我们将直角三角形、锐角三角形、钝角三角形的三个内角量、剪、撕,能不能给三角形内角下一个结论呢?(生:三角形的内角和是180°)对!不论是哪种三角形,不论大小!我们可以得出一个怎样的结论?

  (三角形的内角和是180°。)

  (教师板书:三角形的内角和是180°学生齐读一遍。)

  为什么用测量计算的方法不能得到统一的结果呢?

  (量的不准。有的量角器有误差。)

  老师的大三角形内角和大小三角形内角和大呀?(一样大)首尾呼应

  四、应用新知,知识升华。

  (让学生体验成功的喜悦)

  现在,我们已经知道了三角形的内角和是180°,它又能帮助我们解决那些问题呢?

  (课件5……)

  在一个三角形中,有没有可能有两个钝角呢?

  (不可能。)

  追问:为什么?

  (因为两个锐角和已经超过了180°。)

  有两个直角的一个三角形

  (因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。)

  问:那有没有可能有两个锐角呢?

  (有,在一个三角形中最少有两个内角是锐角。)

  1、看图求出未知角的度数。(知识的直接运用,数学信息很浅显)

  2、做一做:

  在一个三角形中,∠1=140度,∠3=35度,求∠2的度数、

  3、27页第3题(数学信息较为隐藏和生活中的实际问题)

  4.思考题、

  五、总结

  今天,我们在研究三角形的内角和时经历了猜想、验证、得出结论的过程,并且运用这一结论解决了一些问题。人们在进行科学研究中,常常都要经历这样的过程,同时,它也是一种科学的研究方法。

  板书设计:

  三角形内角和

  量一量拼一拼折一折

  三角形内角和是180°

  四年级下册《三角形内角和》的教学设计3

  【教学目标】

  1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。

  2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

  3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

  【教学重点】探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

  【教学难点】对不同探究方法的指导和学生对规律的灵活应用。

  【教具准备】课件、表格、学生准备不同类型的三角形各一个,量角器。

  【教学过程】

  一、激趣引入。

  1、猜谜语

  师:同学们喜欢猜谜语吗?

  生:喜欢。

  师:那么,下面老师给大家出个谜语。请听谜面:

  形状似座山,稳定性能坚,三竿首尾连,学问不简单。(打一图形)大家一起说是什么?

  生:三角形

  2、介绍三角形按角的分类

  师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类

  师分别出示卡片贴于黑板。

  3、激发学生探知心里

  师:大家会不会画三角形啊?

  生:会

  师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。试一试吧!

  生:试着画

  师:画出来没有?

  生:没有

  师:画不出来了,是吗?

  生:是

  师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)

  二、探究新知。

  1、认识三角形的内角

  看看这三个字,说说看,什么是三角形的内角?

  生:就是三角形里面的`角。

  师:三角形有几个内角啊?

  生:3个。

  师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)

  师:你知道什么是三角形“内角和”吗?

  生:三角形里面的角加起来的度数。

  2、研究特殊三角形的内角和

  师:分别拿出一个直角三角板,请同学们看看这属于什么三角形,说出每个角的度数,那这个三角形的内角和是多少度?

  生:算一算:90°+60°+30°=180°90°+45°+45°=180°

  师:180°也是我们学习过的什么角?

  生:平角

  师:从刚才两个三角形的内角和的计算中,你发现了什么?

  3、研究一般三角形的内角和

  师:猜一猜,其它三角形的内角和是多少度呢?

  生:

  4、操作、验证

  师:同学们猜的结果各不相同,那怎么办呀?你能想个办法验证一下吗?

  要求:

  (1)每4人为一个小组。

  (2)每个小组都有不同类型的三角形,每种类型都需要验证,先讨论一下,怎样才能较快的完成任务?

  (3)验证的方法不只一种,同学们要多动动脑子。

  师:好,开始活动!

  师:巡视指导

  师:好!请一组汇报测量结果。

  生:通过测量我们发现每个三角形的三个内角和都在180度左右。

  师:其实三角形的内角和就是180度,只是因为我们在测量时存在了一些误差,所以测量出的结果不准确。

  生:我是用撕的方法,把直角三角形三个内角撕下来,拼在一起,拼成一个平角,是180度。

  师:好!非常好!

  师:有其它同学操作锐角三角形和钝角三角形的吗?谁愿意到前面来展示一下?生:展示锐角三角形(撕拼)

  生:展示折一折我是用折的方法把锐角三角形三个角折在一起,组成一个平角,是180°。

  师:老师也做了一个实验看一看是不是和大家得到结果一样呢?(多媒体展示)

  现在老师问同学们,三角形的内角和是多少?

  生:180度。

  师:通过验证:我们知道了无论是锐角三角形,直角三角形还是钝角三角形,它们的内角和都是180°。板书:三角形内角和等于180度。现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。

  三、解决疑问

  师:好!请同学们回忆一下,刚才课前老师让同学们画出有两个直角的三角形画出来了吗?

  生:没有

  师:那你能用这节课的知识解释一下为什么画不出来吗?

  生:两个直角是180度,没有第三个角了。

  师:如果想画出有两个角是钝角的三角形你能画出来吗?

  生:大于180度,也画不出第三个角。师:所以,生活中不存在这样的三角形。

  师:学会了知识,我们就要懂得去运用。

  四、巩固提高。

  1、填空。

  (1)三角形的内角和是()度。

  (2)一个三角形的两个内角分别是80°和75°,它的另一个角是()。

  2、求下面各角的度数。

  (1)∠1=27°∠2=53°∠3=()这是一个()三角形。

  (2)∠1=70°∠2=50°∠3=()这是一个()三角形。

  3、判断每组中的三个角是不是同一个三角形中的三个内角。

  (1)80°95°5°()

  (2)60°70°90°()

  (3)30°40°50°()

  4、红领巾是一个等腰三角形,求底角的度数。(多媒体出示)

  对学生进行思品教育。

  5、思考延伸。

  根据三角形内角和是180度,算一算四边形和八边形的内角和是多少?

  6、游戏:帮角找朋友每组卡片中,哪三个角可以组成三角形?)每组卡片中,哪三个角可以组成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°

  五、总结。

  四年级下册《三角形内角和》的教学设计4

  教学内容:本节课的教学内容是义务教育课程标准实验教科书数学四年级下册第五单位的第四课时《三角形的内角和》,主要内容是:验证三角形的内角和是180°等。

  教学内容分析:三角形的内角和是180是三角形的一个重要性质,它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。

  教学对象分析:作为四年级的学生已有一定的生活经验,在平时的生活中已经接触到三角形,在尊重学生已有的知识的基础上和利用他们已掌握的学习方法,教师把课堂教学组织生动、活泼,突出知识性、趣味性和生活性,使学生能在轻松愉快的气氛中学习。

  教学目标:

  1、知识目标:学生通过量、剪、拼、摆等操作学具活动,找到新旧知识之间的联系,主动掌握三角形内角和是180°,并运用所学知识解决简单的实际问题。

  2、能力目标:培养学生的观察、归纳、概括能力和初步的空间想象力。

  3、情感目标:培养学生的创新意识、探索精神和实践能力,在学生亲自动手和归纳中,感受到理性的美。

  教学重点:理解并掌握三角形的内角和是180°。

  教学难点:验证所有三角形的内角之和都是180°。

  教具准备:多媒体课件、各种三角形等。

  学具准备:三角形、剪刀、量角器等。

  教学过程:

  一、出示课题,复习旧知

  1、认识三角形的内角。

  (1)复习三角形的概念。

  (2)介绍三角形的“内角”。

  2、理解三角形的内角“和”。

  【设计理念】通过复习三角形的概念的过程,不仅可以巩固学生的旧知识而且可以为新知识教学提供知识铺垫。

  二、动手操作,探究新知

  1、通过预习,认识结论,提出疑问

  2、验证三角形的内角和

  (1)用“量一量、算一算”的方法进行验证

  ①汇报测量结果

  ②产生疑问:为什么结果不统一?

  ③解决疑问:因为存在测量误差。

  (2)用“剪一剪、拼一拼”的方法进行验证

  ①指导剪法。

  ①分别拼:锐角三角形、直角三角形、钝角三角形。

  ③验证得出:三角形的内角和是180°。

  (3)用“折一折”的方法进行验证

  ①指导折法。

  ①分别折:锐角三角形、直角三角形、钝角三角形。

  ③再次验证得出:三角形的内角和是180°。

  3、看书质疑

  【设计理念】此过程采用直观教学手段。通过让学生动手量、拼等直观演示操作直接作用于学生的感官,激活学生的思维,有助于学生的认识由具体到抽象的转化。从而明确三角形的内角和是180°。

  三、实践应用,解决问题:

  1、在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。

  2、求出三角形各个角的度数。(图略)

  3、爸爸给小红买了一个等腰三角形的风筝。它的一个底角是

  70°,它的顶角是多少度?

  4、根据三角形的内角和是180°,你能求出下面的四边形和正六边形的内角和吗?(图略)

  5、数学游戏。

  【设计理念】练习设计的优化是优化教学过程的一个重要方向,所以在新授后的巩固练习中注意设计层层递进,既有坡度、又注意变式,更有一练一得之妙,从而使学生牢固掌握新知。

  四、总结全课、延伸知识:

  1、今天你们学到了哪些知识?是怎样获取这些知识的?你感觉学得怎样?

  2、知识延伸:给学生介绍一种更科学的验证方法——转化。

  【设计理念】课堂总结不仅要关注学生学会了什么,更要关注用什么方法学,要有意识的促进学生反思。

  板书设计:三角形的内角和是180°

  方法:①量一量拼角(略)

  ②拼一拼

  ③折一折

  【设计理念】此板书设计我力求简明扼要、布局合理、条理分明,体现了简洁美和形象美,把知识的重点充分地展现在学生的眼前,起了画龙点睛的作用。

  四年级下册《三角形内角和》的教学设计5

  设计思路

  本节课我先引导学生任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再引导学生通过折角的方法也发现这个结论,由此获得三角形的内角和是180°的结论。概念的形成没有直接给出结论,而是通过量、算、拼、折等活动,让学生探索、实验、发现、推理归纳出三角形的内角和是180°。

  最后让学生运用结论解决实际问题,练习的安排上,注意练习层次性和趣味性,还设计了开放性的练习,由一个同学出题,其它同学回答。先给出三角形两个内角的度数,说出另外一个内角,有唯一的答案。给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让学生在游戏中拓展学生思维。

  教学目标

  1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

  2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

  3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

  教学重点

  让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

  教学准备

  教具:多媒体课件、用彩色卡纸剪的相同的两个直角三角形、一个钝角三角形、一个锐角三角形。

  学具:三角形

  教学过程

  一、引入

  (一)认识三角形的内角及三角形的内角和

  师:我们已经学习了三角形的分类,谁能说说老师手上的是什么三角形?

  师:今天我们来学习新的知识《三角形内角和》,谁能说说哪些角是三角形的内角?(让学生边说边指出来)

  师:那三角形的内角和又是什么意思?(把三角形三个内角的度数合起来就叫三角形的内角和。)

  (二)设疑,激发学生探究新知的心理

  师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)

  生:能。

  师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

  师:有谁画出来啦?

  生1:不能画。

  生2:只能画两个直角。

  生3:……

  师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?那就让我们一起来研究吧!

  (揭示矛盾,巧妙引入新知的探究)

  二、动手操作,探究三角形内角和

  (一)猜一猜。

  师:猜一猜三角形的内角和是多少度呢?同桌互相说说自己的看法。

  生1:180°。

  生2:不一定。

  ……

  (二)操作、验证三角形内角和是180°。

  1、量一量三角形的内角

  动手量一量自己手中的三角形的内角度数。

  师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

  生:可以先量出每个内角的度数,再加起来。

  师:哦,也就是测量计算,是吗?

  学生汇报结果。

  师:请汇报自己测量的结果。

  生1:180°。

  生2:175°。

  生3:182°。

  ……

  2、拼一拼三角形的内角

  学生操作

  师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

  生1:有。

  生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

  师:怎样才能把三个内角放在一起呢?(学生操作)

  生:把它们剪下来放在一起。

  师:很好。

  汇报验证结果。

  师:通过拼合我们得出什么结论?

  生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。

  生2:直角三角形的内角和也是180°。

  生3:钝角三角形的内角和还是180°。

  课件演示验证结果。

  师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)

  师:我们可以得出一个怎样的结论?

  生:三角形的内角和是180°。

  (教师板书:三角形的内角和是180°学生齐读一遍。)

  师:为什么用测量计算的方法不能得到统一的结果呢?

  生1:量的不准。

  生2:有的量角器有误差。

  师:对,这就是测量的误差。

  3、折一折三角形的内角

  师:除了量、拼的方法,还有没有别的方法可以验证三角形的内角和是180°。

  如果学生说不出来,教师便提示或示范。

  学生操作

  4、小结:三角形的内角和是180°。

  三、解决疑问。

  师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)

  生:因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。

  师:在一个三角形中,有没有可能有两个钝角呢?

  生:不可能。

  师:为什么?

  生:因为两个锐角和已经超过了180°。

  师:那有没有可能有两个锐角呢?

  生:有,在一个三角形中最少有两个内角是锐角。

  四、应用三角形的内角和解决问题。

  1、下面说法是否正确。

  钝角三角形的内角和一定大于锐角三角形的内角和。()

  在直角三角形中,两个锐角的和等于90度。()

  在钝角三角形中两个锐角的和大于90度。()

  ④一个三角形中不可能有两个钝角。()

  ⑤三角形中有一个锐角是60度,那么这个三角形一定是个锐角三角形。()

  2、看图求出未知角的度数。(知识的直接运用,数学信息很浅显)

  3、游戏巩固。

  由一个同学出题,其它同学回答。

  (1)给出三角形两个内角,说出另外一个内角(有唯一的答案)。

  (2)给出三角形一个内角,说出其它两个内角(答案不唯一,可以得出无数个答案)。

  4、根据所学的知识算出四边形、正五边形、正六边形的内角和。

  五、全课总结。

  今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?

推荐文章

河南高考排名243480左右排位理科可以上哪些大学,具体能上什么大学2024-05-24 12:41:37

广西高考排名212400左右排位理科可以上哪些大学,具体能上什么大学2024-05-24 12:37:48

广东高考排名85850左右排位物理可以上哪些大学,具体能上什么大学2024-05-24 12:34:24

陕西高考排名150120左右排位理科可以上哪些大学,具体能上什么大学2024-05-24 12:30:12

福建高考排名3220左右排位历史可以上哪些大学,具体能上什么大学2024-05-24 12:26:10

河北高考排名114880左右排位物理可以上哪些大学,具体能上什么大学2024-05-24 12:22:31

入学教育教学设计2023-08-20 05:22:26

绝招的教学设计2023-08-23 18:26:51

妈妈的葡萄教学设计范文(精选三篇)2023-08-23 10:43:56

人教版一年级上册比尾巴教学设计2023-08-27 17:30:56

入学教育教学设计2023-08-20 05:22:26

绝招的教学设计2023-08-23 18:26:51

妈妈的葡萄教学设计范文(精选三篇)2023-08-23 10:43:56

一年级池上优秀的教学设计范文(通用五篇)2023-08-19 10:17:02

杨氏之子的教学设计模板2023-08-28 06:26:02

观察物体教学设计(苏教版国标第五册数学两篇)2023-08-19 05:04:23

最新文章

精华文章