山西中考数学考点1
圆
★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
☆内容提要☆
一、圆的基本性质
1.圆的定义(两种)
2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理
4.垂径定理及其推论
5.“等对等”定理及其推论
6.与圆有关的角:⑴圆心角定义(等对等定理)
⑵圆周角定义(圆周角定理,与圆心角的关系)
⑶弦切角定义(弦切角定理)
二、直线和圆的位置关系
1.切线的性质(重点)
2.切线的判定定理(重点)
3.切线长定理
三、圆换圆的位置关系
1.五种位置关系及判定与性质:(重点:相切)
2.相切(交)两圆连心线的性质定理
3.两圆的公切线:⑴定义⑵性质
四、与圆有关的比例线段
1.相交弦定理
2.切割线定理
五、与和正多边形
1.圆的内接、外切多边形(三角形、四边形)
2.三角形的外接圆、内切圆及性质
3.圆的外切四边形、内接四边形的性质
4.正多边形及计算
中心角:初中数学复习提纲
内角的一半:初中数学复习提纲(右图)
(解Rt△OAM可求出相关元素,初中数学复习提纲、初中数学复习提纲等)
六、一组计算公式
1.圆周长公式
2.圆面积公式
3.扇形面积公式
4.弧长公式
5.弓形面积的计算方法
6.圆柱、圆锥的侧面展开图及相关计算
七、点的轨迹
六条基本轨迹
八、有关作图
1.作三角形的外接圆、内切圆
2.平分已知弧
3.作已知两线段的比例中项
4.等分圆周:4、8;6、3等分
九、重要辅助线
1.作半径
2.见弦往往作弦心距
3.见直径往往作直径上的圆周角
4.切点圆心莫忘连
5.两圆相切公切线(连心线)
6.两圆相交公共弦
山西中考数学考点2
一、平行线分线段成比例定理及其推论:
1.定理:三条平行线截两条直线,所得的对应线段成比例。
2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。
二、相似预备定理:
平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。
三、相似三角形:
1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。
2.性质:(1)相似三角形的对应角相等;
(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;
(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。
说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。
3.判定定理:
(1)两角对应相等,两三角形相似;
(2)两边对应成比例,且夹角相等,两三角形相似;
(3)三边对应成比例,两三角形相似;
(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。
山西中考数学考点3
1.解直角三角形
1.1.锐角三角函数
锐角a的正弦、余弦和正切统称∠a的三角函数。
如果∠a是Rt△ABC的一个锐角,则有
1.2.锐角三角函数的计算
1.3.解直角三角形
在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫做解直角三角形。
2.直线与圆的位置关系
2.1.直线与圆的位置关系
当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。
直线与圆的位置关系有以下定理:
直线与圆相切的判定定理:
经过半径的外端并且垂直这条半径的直线是圆的切线。
圆的切线性质:
经过切点的半径垂直于圆的切线。
2.2.切线长定理
从圆外一点作圆的切线,通常我们把圆外这一点到切点间的线段的长叫做切线长。
切线长定理:过圆外一点所作的圆的两条切线长相等。
2.3.三角形的内切圆
与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。三角形的内心是三角形的三条角平分线的交点。
3.三视图与表面展开图
3.1.投影
物体在光线的照射下,在某个平面内形成的影子叫做投影。光线叫做投影线,投影所在的平面叫做投影面。由平行的投射线所形成的投射叫做平行投影。
可以把太阳光线、探照灯的光线看成平行光线,它们所形成的投影就是平行投影。
3.2.简单几何体的三视图
物体在正投影面上的正投影叫做主视图,在水平投影面上的正投影叫做俯视图,在侧投影面上的正投影叫做左视图。
主视图、左视图和俯视图合称三视图。
产生主视图的投影线方向也叫做主视方向。
3.3.由三视图描述几何体
三视图不仅反映了物体的形状,而且反映了各个方向的尺寸大小。
3.4.简单几何体的表面展开图
将几何体沿着某些棱“剪开”,并使各个面连在一起,铺平所得到的平面图形称为几何体的表面展开图。
圆柱可以看做由一个矩形ABCD绕它的一条边BC旋转一周,其余各边所成的面围成的几何体。AB、CD旋转所成的面就是圆柱的两个底面,是两个半径相同的圆。AD旋转所成的面就是圆柱的侧面,AD不论转动到哪个位置,都是圆柱的母线。
圆锥可以看做将一根直角三角形ACB绕它的一条直角边(AC)旋转一周,它的其余各边所成的面围成的一个几何体。直角边BC旋转所成的面就是圆锥的底面,斜边AB旋转所成的面就是圆锥的侧面,斜边AB不论转动到哪个位置,都叫做圆锥的母线。
山西中考数学考点4
26.1 二次函数及其图像
二次函数(quadratic function)是指未知数的次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。
一般的,自变量x和因变量y之间存在如下关系:
一般式
y=ax∧2;+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a) ;
顶点式
y=a(x+m)∧2+k(a≠0,a、m、k为常数)或y=a(x-h)∧2+k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;
交点式
y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] ;
重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。
牛顿插值公式(已知三点求函数解析式)
y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3) 。由此可引导出交点式的系数a=y1/(x1_x2) (y1为截距)
求根公式
二次函数表达式的右边通常为二次三项式。
求根公式
x是自变量,y是x的二次函数
x1,x2=[-b±(√(b^2-4ac))]/2a
(即一元二次方程求根公式)(如右图)
求根的方法还有因式分解法和配方法
在平面直角坐标系中作出二次函数y=2x的平方的图像,
可以看出,二次函数的图像是一条永无止境的抛物线。
不同的二次函数图像
如果所画图形准确无误,那么二次函数将是由一般式平移得到的。
注意:草图要有 1本身图像,旁边注明函数。
2画出对称轴,并注明X=什么
3与X轴交点坐标,与Y轴交点坐标,顶点坐标。抛物线的性质
轴对称
1.抛物线是轴对称图形。对称轴为直线x = -b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
顶点
2.抛物线有一个顶点P,坐标为P ( -b/2a ,4ac-b^2;)/4a )
当-b/2a=0时,P在y轴上;当Δ= b^2;-4ac=0时,P在x轴上。
开口
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
决定对称轴位置的因素
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左; 因为若对称轴在左边则对称轴小于0,也就是- b/2a<0,所以b/2a要大于0,所以a、b要同号
当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab< 0 ),对称轴在y轴右。
事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。
决定抛物线与y轴交点的因素
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
抛物线与x轴交点个数
6.抛物线与x轴交点个数
Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
_______
Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b2/4a;在{x|x<-b/2a}上是减函数,在
{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)
特殊值的形式
7.特殊值的形式
①当x=1时 y=a+b+c
②当x=-1时 y=a-b+c
③当x=2时 y=4a+2b+c
④当x=-2时 y=4a-2b+c
二次函数的性质
8.定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,
正无穷);②[t,正无穷)
奇偶性:当b=0时为偶函数,当b≠0时为非奇非偶函数。
周期性:无
解析式:
①y=ax^2+bx+c[一般式]
⑴a≠0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点:(-b/2a,(4ac-b^2)/4a);
⑷Δ=b^2-4ac,
Δ>0,图象与x轴交于两点:
([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);
Δ=0,图象与x轴交于一点:
(-b/2a,0);
Δ<0,图象与x轴无交点;
②y=a(x-h)^2+k[顶点式]
此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;
③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)
对称轴X=(X1+X2)/2 当a>0 且X≧(X1+X2)/2时,Y随X的增大而增大,当a>0且X≦(X1+X2)/2时Y随X
的增大而减小
此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连
用)。
交点式是Y=A(X-X1)(X-X2) 知道两个x轴交点和另一个点坐标设交点式。两交点X值就是相应X1 X2值。
26.2 用函数观点看一元二次方程
1. 如果抛物线 与x轴有公共点,公共点的横坐标是 ,那么当 时,函数的值是0,因此 就是方程的一个根。
2. 二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。
26.3 实际问题与二次函数
在日常生活、生产和科研中,求使材料最省、时间最少、效率等问题,有些可归结为求二次函数的值或最小值。
山西中考数学考点5
(一)平行四边形的定义、性质及判定.
1.两组对边平行的四边形是平行四边形.
2.性质:
(1)平行四边形的对边相等且平行;
(2)平行四边形的对角相等,邻角互补;
(3)平行四边形的对角线互相平分.
3.判定:
(1)两组对边分别平行的四边形是平行四边形:
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
(4)两组对角分别相等的四边形是平行四边形:
(5)对角线互相平分的四边形是平行四边形.
4·对称性:平行四边形是中心对称图形.
(二)矩形的定义、性质及判定.
1-定义:有一个角是直角的平行四边形叫做矩形.
2·性质:矩形的四个角都是直角,矩形的对角线相等
3.判定:
(1)有一个角是直角的平行四边形叫做矩形;
(2)有三个角是直角的四边形是矩形:
(3)两条对角线相等的平行四边形是矩形.
4·对称性:矩形是轴对称图形也是中心对称图形.
(三)菱形的定义、性质及判定.
1·定义:有一组邻边相等的平行四边形叫做菱形.
(1)菱形的四条边都相等;。
(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角
(3)菱形被两条对角线分成四个全等的直角三角形.
(4)菱形的面积等于两条对角线长的积的一半:
2.s菱=争6(n、6分别为对角线长).
3.判定:(1)有一组邻边相等的平行四边形叫做菱形
(2)四条边都相等的四边形是菱形;
(3)对角线互相垂直的平行四边形是菱形.
4.对称性:菱形是轴对称图形也是中心对称图形.
(四)正方形定义、性质及判定.
1.定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
2.性质:(1)正方形四个角都是直角,四条边都相等;
(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;
(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形;
(4)正方形的对角线与边的夹角是45。;
(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.
3.判定:
(1)先判定一个四边形是矩形,再判定出有一组邻边相等;
(2)先判定一个四边形是菱形,再判定出有一个角是直角.
4.对称性:正方形是轴对称图形也是中心对称图形.
(五)梯形的定义、等腰梯形的性质及判定.
1.定义:一组对边平行,另一组对边不平行的四边形是梯形.两腰相等的梯形是等腰梯
形.一腰垂直于底的梯形是直角梯形.
2.等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等.
3.等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形.
4.对称性:等腰梯形是轴对称图形.
(六)三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半.
(七)线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点..
(八)依次连接任意一个四边形各边中点所得的四边形叫中点四边形
推荐文章
四川高考排名125230左右排位文科可以上哪些大学,具体能上什么大学2024-06-04 12:57:05
西南交通大学希望学院和北京农学院哪个好 附对比和区别排名2024-06-04 12:53:13
广东高考排名249380左右排位物理可以上哪些大学,具体能上什么大学2024-06-04 12:50:07
黑龙江高考排名20460左右排位理科可以上哪些大学,具体能上什么大学2024-06-04 12:46:59
湖北高考排名115550左右排位物理可以上哪些大学,具体能上什么大学2024-06-04 12:43:10
长春师范大学和广州大学哪个好 附对比和区别排名2024-06-04 12:39:13
入党申请书最新范文1000字五篇2023-08-25 02:24:41
四年级数学的小学巩固教学总结范文2023-08-18 11:23:00
有关高中责任议论文作文五篇2023-08-20 04:36:20
已经毕业的大学生入党申请书通用10篇2023-08-18 19:06:45
中考生物知识点总结2023-08-10 21:41:20
中考满分物理考试分享有哪些2023-08-14 22:15:05
中考地理易错混淆知识点总结有什么2023-08-19 16:19:22
2024广安中考分数线查询公布多少分,历年广安中考分数线2023-08-14 05:50:57
2024宜宾中考分数线查询公布多少分,历年宜宾中考分数线2023-08-16 05:36:57
2024南充中考分数线查询公布多少分,历年南充中考分数线2023-08-15 18:03:26