学文网

苏教版七年级数学下册教案例文

时间:2023-08-18 13:06:00 文/张东东老师 数学学文网www.xuewenya.com

苏教版七年级数学下册教案2021例文1

教学目标

1.使学生正确理解的意义,掌握的三要素;

2.使学生学会由上的已知点说出它所表示的数,能将有理数用上的点表示出来;

3.使学生初步理解数形结合的思想方法.

教学重点和难点

重点:初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数.

难点:正确理解有理数与上点的对应关系.

课堂教学过程 设计

一、从学生原有认知结构提出问题

1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

2.用“射线”能不能表示有理数?为什么?

3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

待学生回答后,教师指出,这就是我们本节课所要学习的内容——.

二、讲授新课

让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.

与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):

1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…

提问:我们能不能用这条直线表示任何有理数?(可列举几个数)

在此基础上,给出的定义,即规定了原点、正方向和单位长度的直线叫做.

进而提问学生:在上,已知一点P表示数-5,如果上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?

通过上述提问,向学生指出:的三要素——原点、正方向和单位长度,缺一不可.

三、运用举例 变式练习

例1 画一个,并在上画出表示下列各数的点:

例2 指出上A,B,C,D,E各点分别表示什么数.

课堂练习

示出来.

2.说出下面上A,B,C,D,O,M各点表示什么数?

最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.

四、小结

指导学生阅读教材后指出:是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.

本节课要求同学们能掌握的三要素,正确地画出,在此还要提醒同学们,所有的有理数都可用上的点来表示,但是反过来不成立,即上的点并不是都表示有理数,至于上的哪些点不能表示有理数,这个问题以后再研究.

五、作业

1.在下面上:

(1)分别指出表示-2,3,-4,0,1各数的点.

(2)A,H,D,E,O各点分别表示什么数?

2.在下面上,A,B,C,D各点分别表示什么数?

3.下列各小题先分别画出,然后在上画出表示大括号内的一组数的点:

(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

课堂教学设计说明

从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则.小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念.教学中,的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识.直线、都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的.例如,向学生提问:在上对应一亿万分之一的点,你能画出来吗?它是不是存在等.

苏教版七年级数学下册教案2021例文2

一、素质教育目标

(一)知识教学点

1.掌握的三要素,能正确画出.

2.能将已知数在上表示出来,能说出上已知点所表示的数.

(二)能力训练点

1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.

2.对学生渗透数形结合的思想方法.

(三)德育渗透点

使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.

(四)美育渗透点

通过画,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受.

二、学法引导

1.教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法.

2.学生学法:动手画,动脑概括的三要素,动手、动脑做练习.

三、重点、难点、疑点及解决办法

1.重点:正确掌握画法和用上的点表示有理数.

2.难点:有理数和上的点的对应关系。

四、课时安排

1课时

五、教具学具准备

电脑、投影仪、自制胶片.

六、师生互动活动设计

师生同步画,学生概括三要素,师出示投影,生动手动脑练习

七、教学步骤

(一)创设情境,引入新课

师:大家知识温度计的用途是什么?

生:温度计可以测量温度

(出示投影1)

三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.

师:三个温度计所表示的温度是多少?

生:2℃,-5℃,0℃.

我们能否用类似温度计的图形表示有理数呢?

这种表示数的图形就是今天我们要学的内容—(板书课题).

【教法说明】从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容—.再从温度计这个实物形象抽象出来研究.既激发了学生的学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的意识.

(二)探索新知,讲授新课

1.的画法

与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:

第一步:画直线定原点 原点表示0(相当于温度计上的0℃).

第二步:规定从原点向右的为正方向 那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负).

第三步:选择适当的长度为单位长度 (相当于温度计上每1℃占1小格的长度).

【教法说明】教师边讲解边示范,学生跟着一起画图.培养学生动手、动脑和实际操作能力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法.

让学生观察画好的直线,思考以下问题:

(出示投影1)

(1)原点表示什么数?

(2)原点右方表示什么数?原点左方表示什么数?

(3)表示+2的点在什么位置?表示-1的点在什么位置?

(4)原点向右0.5个单位长度的A点表示什么数?原点向左 个单位长度的B点表示什么数?

根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出的定义.

学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充.

【教法说明】通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力.

教师根据学生回答给予肯定或否定,纠正后板书.

2.的定义:规定了原点、正方向和单位长度的直线叫做.

向学生提出问题:上为什么要规定原点、正方向和单位长度呢?它们各起什么作用?引导学生结合温度订正确回答这个问题,从而知道三要素的重要性,了解三者缺一不可,认识和掌握判断一条直线是不是的依据.

学生活动:同桌之间、前后桌之间讨论.使学生从直观认识上升到理性认识.

3.尝试反馈,巩固练习

请大家回答下列问题:

(出示投影2)

(1)有人说一条直线是一条,对不对?为什么?

(2)下列所画对不对?如果不对,指出错在哪里?

学生活动:学生思考,不准讨论,想好后举手回答.

让其他学生对其回答进行评判,对确有疑问的题目,教师给予讲解.

【教法说明】此组练习的目的是巩固的概念.

答案:(2)①缺原点,②缺正方向,③不是射线而是直线,④缺单位长度,⑥提醒学生注意在同一数轮上必须用同一单位长度进行度量.⑤⑦是,同时⑦为学习平面直角坐标系打基础.

4.有理数与上点的关系

通过刚才的学习我们知道所有的有理数都可以用上的点来表示.

例1 画一条,并画出表示下列各数的点:

1,5,0,-2.5, .

学生练习:同学们在练习本上画一条,然后在上标出各点,一名学生板演.教师巡回指导,发现问题及时纠正.

【教法说明】让学生动手自己画,有助于培养学生实际操作能力.例1是把给定的有理数用上的点来表示,完成由“数”到“形”的思维过程,有助于学生加深对概念的理解.

(出示投影4)

例2 指出上 A、B、C、D、E各点分别表示什么数?

先让学生思考一会,然后学生举手回答

解:A表示-3;B表示 ; C表示3;D表示 ;E表 .

【教法说明】例2是让学生说出上的点表示的有理数,完成了由“形”到“数”的思维过程.例1、例2从各自不同的两个侧面,体现出数形结合,渗透了数形之间相互转化的数学思想.

5.尝试反馈,巩固练习

(出示投影5)

①说出下面上A、B、C、D、O、M各点表示什么数?

②将-3, ,1.5,-6, ,2.25,,-5,1

各数用上的点表示出来.

【教法说明】①题由点读数练习,②题由数找点练习,进一步巩固加深本节所学的内容.

(三)归纳小结

师:①是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示数与形之间的内在联系,是帮助学生理解数学、学习数学的重要思想方法.本章有理数的有关性质和运算都是结合进行的.

②掌握三要素,正确地画出,提醒同学们,所有的有理数都可用上的各点来表示,但是反过来不成立,即上的各点,并不是都表示有理数.以后再研究.

八、随堂练习

1.判断题

(1)直线就是( )

(2)是直线( )

(3)任何一个有理数都可以用上的点来表示()

(4)上到原点距离等于3的点所表示的数是+3( )

(5)上原点左边表示的数是负数,右边表示的数是正数,原点表示的数是0.( )

2.画一条数轮,并画出表示下列各数的点

,-5,0,+3.2,-1.4

九、布置作业

(-)必做题:课本第56页1、2.

(二)选做题:课本第56页及第57页B组l.

(三)思考题:

①在数轮上距原点3个单位长度的点表示的数是_____________

②在数轮上表示-6的点在原点的___________侧,距离原点___________个单位长度,表示+6的点在原点的__________侧,距离原点____________个单位长度.

【教法说明】由于学生在知识、技能、能力方面发展不尽相同,所以分层次地布置作业 ,兼顾学习有困难和学有余力的学生,使他们都能达到大纲中规定的基本要求,并使部分学生能发展他们的数学才能.

十、板书设计

苏教版七年级数学下册教案2021例文3

教学目标

1,掌握绝对值的概念,有理数大小比较法则.

2,学会绝对值的计算,会比较两个或多个有理数的大小.

3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.

教学难点 两个负数大小的比较

知识重点 绝对值的概念

教学过程(师生活动) 设计理念

设置情境

引入课题 星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

学生思考后,教师作如下说明:

实际生活中有些问题只关注量的具体值,而与相反

意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;

观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.

学生回答后,教师说明如下:

数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|

例如,上面的问题中|20|=20,|-10|=10显然,|0|=0 这个例子中,第一问是相反意义的量,用正负

数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体

验数学知识与生活实际的联系.

因为绝对值概念的几何意义是数形转化的典型

模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.

合作交流

探究规律 例1求下列各数的绝对值,并归纳求有理数a的绝对

有什么规律?、

-3,5,0,+58,0.6

要求小组讨论,合作学习.

教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).

巩固练习:教科书第15页练习.

其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别. 求一个数的绝时值的法则,可看做是绝对值概

念的一个应用,所以安排此例.

学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论.

结合实际发现新知 引导学生看教科书第16页的图,并回答相关问题:

把14个气温从低到高排列;

把这14个数用数轴上的点表示出来;

观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?

应怎样比较两个数的大小呢?

学生交流后,教师总结:

14个数从左到右的顺序就是温度从低到高的顺序:

在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.

在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则

想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系.

要求学生在头脑中有清晰的图形. 让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性

数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形的想象。

课堂练习 例2,比较下列各数的大小(教科书第17页例)

比较大小的过程要紧扣法则进行,注意书写格式

练习:第18页练习

小结与作业

课堂小结 怎样求一个数的绝对值,怎样比较有理数的大小?

本课作业 1, 必做题:教产书第19页习题1,2,第4,5,6,10

2, 选做题:教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在

这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学

习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意

义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理

数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,

学生不易接受.

2, 一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

3, 有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学

中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到

大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习.

4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教

学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

苏教版七年级数学下册教案2021例文4

教学目标

1, 掌握相反数的概念,进一步理解数轴上的点与数的对应关系;

2, 通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;

3, 体验数形结合的思想。

教学难点 归纳相反数在数轴上表示的点的特征

知识重点 相反数的概念

教学过程(师生活动) 设计理念

设置情境

引入课题 问题1:请将下列4个数分成两类,并说出为什么要这样分类

4, -2,-5,+2

允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。

(引导学生观察与原点的距离)

思考结论:教科书第13页的思考

再换2个类似的数试一试。

归纳结论:教科书第13页的归纳。 以开放的形式创设情境,以学生进行讨论,并培养分类的能力

培养学生的观察与归纳能力,渗透数形思想

深化主题提炼定义 给出相反数的定义

问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?

学生思考讨论交流,教师归纳总结。

规律:一般地,数a的相反数可以表示为-a

思考:数轴上表示相反数的两个点和原点有什么关系?

练一练:教科书第14页第一个练习 体验对称的图形的特点,为相反数在数轴上的特征做准备。

深化相反数的概念;“零的相反数是零”是相反数定义的一部分。

强化互为相反数的数在数轴上表示的点的几何意义

给出规律

解决问题 问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?

学生交流。

分别表示+5和-5的相反数是-5和+5

练一练:教科书第14页第二个练习 利用相反数的概念得出求一个数的相反数的方法

小结与作业

课堂小结 1, 相反数的定义

2, 互为相反数的数在数轴上表示的点的特征

3, 怎样求一个数的相反数?怎样表示一个数的相反数?

本课作业 1, 必做题 教科书第18页习题1.2第3题

2, 选做题 教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.

2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.

3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.

苏教版七年级数学下册教案2021例文5

教学目标:

知识与能力

能正确运用角度表示方向,并能熟练运算和角有关的问题。

过程与方法

能通过实际操作,体会方位角在是实际生活中的应用,发展抽象思维。

情感、态度、价值观

能积极参与数学学习活动,培养学生对数学的好奇心和求知欲。

教学重点:方位角的表示方法。

教学难点:方位角的准确表示。

教学准备:预习书上有关内容

预习导学:

如图所示,请说出四条射线所表示的方位角?

教学过程;

一、创设情景,谈话导入

在现实生活中,有一种角经常用于航空、航海,测绘中领航员常用地图和罗盘进行这种角的测定,这就是方位角,方位角应用比较广泛,什么是方位角呢?

二、精讲点拔,质疑问难

方位角其实就是表示方向的角,这种角以正北,正南方向为基准描述物体的方向,如“北偏东30°”,“南偏西40°”等,方位角不能以正东,正西为基准,如不能说成“东偏北60°,西偏南50°”等,但有时如北偏东45°时,我们可以说成东北方向。

三、课堂活动,强化训练

例1如图:指出图中射线OA、OB所表示的方向。

(学生个别回答,学生点评)

例2若灯塔位于船的北偏东30°,那么船在灯塔的什么方位?

(小组讨论,个别回答,教师总结)

例3如图,货轮O在航行过程中发现灯塔A在它的南偏东60°的方向上,同时在它北偏东60°,南偏西10°,西北方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法,画出表示客轮B、货轮C、海岛D方向的射线。

(教师分析,一学生上黑板,学生点评)

四、延伸拓展,巩固内化

例4某哨兵上午8时测得一艘船的位置在哨所的.南偏西30°,距哨所10km的地方,上午10时,测得该船在哨所的北偏东60°,距哨所8km的地方。

(1)请按比例尺1:200000画出图形。

(独立完成,一同学上黑板,学生点评)

(2)通过测量计算,确定船航行的方向和进度。

(小组讨论,得出结论,代表发言)

五、布置作业、当堂反馈

练习:请使用量角器、刻度尺画出下列点的位置。

(1)点A在点O的北偏东30°的方向上,离点O的距离为3cm。

(2)点B在点O的南偏西60°的方向上,离点O的距离为4cm。

(3)点C在点O的西北方向上,同时在点B的正北方向上。

作业:书P1407、9

推荐文章

河南高考排名195560左右排位理科可以上哪些大学,具体能上什么大学2024-06-08 12:22:13

吉林外国语大学和湘潭大学兴湘学院哪个好 附对比和区别排名2024-06-08 12:17:15

江西工商职业技术学院在黑龙江高考历年录戎数线(2024届参考)2024-06-08 12:13:44

甘肃高考排名5480左右排位理科可以上哪些大学,具体能上什么大学2024-06-08 12:10:50

四川文化艺术学院和天津城建大学哪个好 附对比和区别排名2024-06-08 12:07:58

江西高考排名71510左右排位理科可以上哪些大学,具体能上什么大学2024-06-08 12:05:17

语文初一下册人教版复习资料三篇2023-08-12 00:00:09

中小学生安全素质教育观后感及心得五篇2023-08-16 09:24:55

大学生应聘求职简历电子版五篇2023-08-13 21:28:09

我们是时代的答卷人作文10篇大全2023-08-14 06:25:16

新北师大版最新一年级数学下册教案2023-08-22 16:51:11

新人教版七年级上数学教案最新例文2023-08-20 04:29:14

苏版七年级数学下册教案最新范文2023-08-26 10:57:30

新版北师大版二年级下册数学教案最新模板2023-08-12 05:23:58

最新一年级数学跷跷板教案模板2023-08-25 18:57:41

二年级下册数学统计教案文案2023-08-22 19:25:47

最新文章