2021初一下册数学教案模板1
教学目标
1.掌握等边三角形的性质和判定方法. 2.培养分析问题、解决问题的能力.
教学重点:等边三角形的性质和判定方法.
教学难点:等边三角形性质的应用
教学过程
I创设情境,提出问题
回顾上节课讲过的等边三角形的有关知识
1.等边三角形是轴对称图形,它有三条对称轴.
2.等边三角形每一个角相等,都等于60°
3.三个角都相等的三角形是等边三角形.
4.有一个角是60°的等腰三角形是等边三角形.
其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.
II例题与练习
1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?
①在边AB、AC上分别截取AD=AE.
②作∠ADE=60°,D、E分别在边AB、AC上.
③过边AB上D点作DE∥BC,交边AC于E点.
2. 已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.
分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.
3. P56页练习1、2
III课堂小结:1.等腰三角形和性质;等腰三角形的条件
V布置作业: 1.P58页习题12.3第ll题.
2.已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?
2021初一下册数学教案模板2
一、指导思想
通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析
八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。八(1)班、(3)班,两班比较,一班优生稍多一些,但后进面却较大,学生非常活跃,有少数学生不上进,思维不紧跟老师。三班学生单纯,有少数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
三、教材分析
第十一章一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数——一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现“问题情境——建立数学模型——概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题;同时在教学顺序上,将正比例函数纳入一次函数的研究中去。教材注意新旧知识的比较与联系,如在教材中,加强了一次函数与一次方程(组)、一次不等式的联系等。
第十二章数据的描述通过对实际问题的讨论,使学生体会数据的作用,更好地理解数据表达的信息,发展数感和统计观念,为了更好地理解较大的数据信息,本单元首先安排了有关大数的感受与表示的内容,重点是让学生运用身边熟悉的事物,从多种角度对大数进行估计,对于所收集的数据,还要清晰、有效的进行展示,以尽可能的获取有用的信息。教材安排了扇形统计图、条形图、折线图、直方图等的认识与制作,不同的统计图表的选择等内容。
第十三章全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。
第十四章轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。
第十五章整式在形式上力求突出:整式及整式运算产生的实际背景————使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程————为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握————设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。
四、教学措施
1、课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。
2、认真备课、精心授课,抓紧课堂四十五分钟,努力提高教学效果。
3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫。
4、不断改进教学方法,提高自身业务素养。
5、教学中注重自主学习、合作学习、探究学习。
2021初一下册数学教案模板3
一、学习目标:
1.多项式除以单项式的运算法则及其应用.
2.多项式除以单项式的运算算理.
二、重点难点:
重 点: 多项式除以单项式的运算法则及其应用
难 点: 探索多项式与单项式相除的运算法则的过程
三、合作学习:
(一) 回顾单项式除以单项式法则
(二) 学生动手,探究新课
1. 计算下列各式:
(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.
2. 提问:①说说你是怎样计算的 ②还有什么发现吗?
(三) 总结法则
1. 多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______
2. 本质:把多项式除以单项式转化成______________
四、精讲精练
例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);
(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)
随堂练习: 教科书 练习
五、小结
1、单项式的除法法则
2、应用单项式除法法则应注意:
A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号
B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;
C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;
D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行.
E、多项式除以单项式法则
第三十四学时:14.2.1 平方差公式
一、学习目标:1.经历探索平方差公式的过程.
2.会推导平方差公式,并能运用公式进行简单的运算.
二、重点难点
重 点: 平方差公式的推导和应用
难 点: 理解平方差公式的结构特征,灵活应用平方差公式.
三、合作学习
你能用简便方法计算下列各题吗?
(1)2001×1999 (2)998×1002
导入新课: 计算下列多项式的积.
(1)(x+1)(x-1) (2)(m+2)(m-2)
(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)
结论:两个数的和与这两个数的差的积,等于这两个数的平方差.
即:(a+b)(a-b)=a2-b2
四、精讲精练
例1:运用平方差公式计算:
(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)
例2:计算:
(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)
随堂练习
计算:
(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)
(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)
五、小结:(a+b)(a-b)=a2-b2
2021初一下册数学教案模板4
一、学习目标:1.使学生了解运用公式法分解因式的意义;
2.使学生掌握用平方差公式分解因式
二、重点难点
重 点: 掌握运用平方差公式分解因式.
难 点: 将单项式化为平方形式,再用平方差公式分解因式;
学习方法:归纳、概括、总结
三、合作学习
创设问题情境,引入新课
在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.
如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法.
1.请看乘法公式
(a+b)(a-b)=a2-b2 (1)
左边是整式乘法,右边是一个多项式,把这个等式反过来就是
a2-b2=(a+b)(a-b) (2)
左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否是因式分解?
利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式.
a2-b2=(a+b)(a-b)
2.公式讲解
如x2-16
=(x)2-42
=(x+4)(x-4).
9 m 2-4n2
=(3 m )2-(2n)2
=(3 m +2n)(3 m -2n)
四、精讲精练
例1、把下列各式分解因式:
(1)25-16x2; (2)9a2- b2.
例2、把下列各式分解因式:
(1)9(m+n)2-(m-n)2; (2)2x3-8x.
补充例题:判断下列分解因式是否正确.
(1)(a+b)2-c2=a2+2ab+b2-c2.
(2)a4-1=(a2)2-1=(a2+1)?(a2-1).
五、课堂练习 教科书练习
六、作业 1、教科书习题
2、分解因式:x4-16 x3-4x 4x2-(y-z)2
3、若x2-y2=30,x-y=-5求x+y
2021初一下册数学教案模板5
用“完全平方公式”分解因式
一、学习目标:
1.使学生会用完全平方公式分解因式.
2.使学生学习多步骤,多方法的分解因式
二、重点难点:
重点: 让学生掌握多步骤、多方法分解因式方法
难点: 让学生学会观察多项式特点,恰当安排步骤,恰当地选用不同方法分解因式
三、合作学习
创设问题情境,引入新课
完全平方公式(a±b)2=a2±2ab+b2
讲授新课
1.推导用完全平方公式分解因式的公式以及公式的特点.
将完全平方公式倒写:
a2+2ab+b2=(a+b)2;
a2-2ab+b2=(a-b)2.
凡具备这些特点的三项式,就是一个二项式的完全平方,将它写成平方形式,便实现了因式分解
用语言叙述为:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方
形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.
由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.
练一练.下列各式是不是完全平方式?
(1)a2-4a+4; (2)x2+4x+4y2;
(3)4a2+2ab+ b2; (4)a2-ab+b2;
四、精讲精练
例1、把下列完全平方式分解因式:
(1)x2+14x+49; (2)(m+n)2-6(m +n)+9.
例2、把下列各式分解因式:
(1)3ax2+6axy+3ay2; (2)-x2-4y2+4xy.
课堂练习: 教科书练习
补充练习:把下列各式分解因式:
(1)(x+y)2+6(x+y)+9; (2)4(2a+b)2-12(2a+b)+9;
五、小结:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方
形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.
六、作业:1、
2、分解因式:
X2-4x+4 2x2-4x+2 (x2+y2)2-8(x2+y2)+16 (x2+y2)2-4x2y2
45ab2-20a -a+a3 a-ab2 a4-1 (a2+1)2-4 (a2+1)+4
推荐文章
河南高考排名195560左右排位理科可以上哪些大学,具体能上什么大学2024-06-08 12:22:13
吉林外国语大学和湘潭大学兴湘学院哪个好 附对比和区别排名2024-06-08 12:17:15
江西工商职业技术学院在黑龙江高考历年录戎数线(2024届参考)2024-06-08 12:13:44
甘肃高考排名5480左右排位理科可以上哪些大学,具体能上什么大学2024-06-08 12:10:50
四川文化艺术学院和天津城建大学哪个好 附对比和区别排名2024-06-08 12:07:58
江西高考排名71510左右排位理科可以上哪些大学,具体能上什么大学2024-06-08 12:05:17
2024全国中小学消防安全公开课心得体会精选六篇2023-08-15 15:12:14
最新一年级数学教案9加几例文2023-08-11 15:35:30
中秋节吃月饼初二800字优秀作文五篇2023-08-16 18:41:46
平移人教版数学七年级下册教案2023-08-26 15:44:27
最新一年级数学教案9加几例文2023-08-11 15:35:30
平移人教版数学七年级下册教案2023-08-26 15:44:27
一年级数学下册认识平面图形教案模板2023-08-12 16:49:54
新版北师大版二年级下册数学教案最新模板2023-08-12 05:23:58
最新一年级数学跷跷板教案模板2023-08-25 18:57:41
二年级下册数学统计教案文案2023-08-22 19:25:47