七年级数学复习提纲
第一章 有理数
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。
1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作a。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。
第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。 解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。
第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。
3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。
第四章 数据的收集与整理
收集、整理、描述和分析数据是数据处理的基本过程。
八年级数学复习提纲
第十一章 一次函数
我们称数值变化的量为变量(variable)。
有些量的数值是始终不变的,我们称它们为常量(constant)。
在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们说x是自变量(independent variable),y是x的函数(function)。
如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。
形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional function),其中k叫做比例系数。
形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数(linear function)。正比例函数是一种特殊的一次函数。
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“形”的角度看,解方程组相当于确定两条直线交点的坐标。
第十二章 数据的描述
我们称落在不同小组中的数据个数为该组的频数(frequency),频数与数据总数的比为频率。
常见的统计图:条形图(bar graph)(复合条形图)、扇形图(pie chart)、折线图、直方图(histogram)。
条形图:描述各组数据的个数。
复合条形图:不仅可以看出数据的情况,而且还可以对它们进行比较。
扇形图:描述各组频数的大小在总数中所占的百分比。
折线图:描述数据的变化趋势。
直方图:能够显示各组频数分布的情况;易于显示各组之间频数的差别。
在频数分布(frequency distribution)表中:我们把分成组的个数称为组数,每一组两个端点的差称为组距。
求出各个小组两个端点的平均数,这些平均数称为组中值。
第十三章 全等三角形
能够完全重合的两个图形叫做全等形(congruent figures)。
能够完全重合的两个三角形叫做全等三角形(congruent triangles)。
全等三角形的性质:全等三角形对应边相等;全等三角形对应角相等。
全等三角形全等的条件:三边对应相等的两个三角形全等。(SSS)
两边和它们的夹角对应相等的两个三角形全等。(SAS)
两角和它们的夹边对应相等的两个三角形全等。(ASA)
两个角和其中一个角的对边对应相等的两个三角形全等。(AAS)
角平分线的性质:角平分线上的点到角的两边的距离相等。
到角两边的距离相等的点在角的平分线上。
第十四章 轴对称
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(perpendicular bisector)。
轴对称图形的对称轴,是任何一对对应点所连接线段的垂直平分线。
线段垂直平分线上的点与这条线段两个端点的距离相等。
由一个平面图形得到它的轴对称图形叫做轴对称变换。
等腰三角形的性质:
等腰三角形的两个底角相等。(等边对等角)
等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)(附:顶角+2底角=180°)
如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)
有一个角是60°的等腰三角形是等边三角形。
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
第十五章 整式
式子是数或字母的积的式子叫做单项式(monomial)。单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式的系数(coefficient)。
一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree)。
几个单项式的和叫做多项式(polynomial)。每个单项式叫多项式的项(term),其中,不含字母的叫做常数项(constant term)。
多项式里次数最高的项的次数,就是这个多项式的次数。
单项式和多项式统称整式(integral expression_r)。
所含字母相同,并且相同字母的指数也相同的项叫做同类项。
把多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变,叫做合并同类项。
几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号,合并同类项。
同底数幂相乘,底数不变,指数相加。
幂的乘方,底数不变,指数相乘
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
(x+p)(x+q)=x^2+(p+q)x+pq
平方差公式:(a+b)(a-b)=a^2-b^2
完全平方公式:(a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2
(a+b+c)^2=a^2+2a(b+c)+(b+c)^2
同底数幂相除,底数不变,指数相减。
任何不等于0的数的0次幂都等于1。
第十六章 分式
如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式(fraction)。
分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式乘方要把分子、分母分别乘方。
a^-n=1/a^n (a≠0) 这就是说,a^-n (a≠0)是a^n的倒数。
分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
第十七章 反比例函数
形如y=k/x(k为常数,k≠0)的函数称为反比例函数(inverse proportional function)。
反比例函数的图像属于双曲线(hyperbola)。
当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;
当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。
第十八章 勾股定理
勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a^2+b^2=c^2
勾股定理逆定理:如果三角形三边长a,b,c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
经过证明被确认正确的命题叫做定理(theorem)。
我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)
第十九章 四边形
有两组对边分别平行的四边形叫做平行四边形。
平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。
平行四边形的判定:
1.两组对边分别相等的四边形是平行四边形;
2.对角线互相平分的四边形是平行四边形;
3.两组对角分别相等的四边形是平行四边形;
4.一组对边平行且相等的四边形是平行四边形。
三角形的中位线平行于三角形的第三边,且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。
矩形判定定理:
1.有一个角是直角的平行四边形叫做矩形。
2.对角线相等的平行四边形是矩形。
3.有三个角是直角的四边形是矩形。
菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
菱形的判定定理:
1.一组邻边相等的平行四边形是菱形(rhombus)。
2.对角线互相垂直的平行四边形是菱形。
3.四条边相等的四边形是菱形。
S菱形=1/2×ab(a、b为两条对角线)
正方形的性质:四条边都相等,四个角都是直角。
正方形既是矩形,又是菱形。
正方形判定定理:
1.邻边相等的矩形是正方形。
2.有一个角是直角的菱形是正方形。
一组对边平行,另一组对边不平行的四边形叫做梯形(trapezium)。
等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。
等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。
线段的重心就是线段的中点。
平行四边形的重心是它的两条对角线的交点。
三角形的三条中线交于疑点,这一点就是三角形的重心。
宽和长的比是(根号5-1)/2(约为0.618)的矩形叫做黄金矩形。
第二十章 数据的分析
将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
一组数据中出现次数最多的数据就是这组数据的众数(mode)。
一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。
方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。
数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告
九年级数学复习提纲
第二十一章 二次根式
21.1 二次根式
1.二次根式:式子 (a≥0)叫做二次根式。 2.最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式; (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式。如 不是最简二次根式,因被开方数中含有4是可开得尽方的因数,又如 , , ..........都不是最简二次根式,而 , ,5 , 都是最简二次根式。 3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。如 , , 就是同类二次根式,因为 =2 , =3 ,它们与 的被开方数均为2。 4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。如 与 ,a+ 与a- , - 与 + ,互为有理化因式。
二次根式的性质:1. (a≥0)是一个非负数, 即 ≥0;2.非负数的算术平方根再平方仍得这个数,即:( )2=a(a≥0);3.某数的平方的算术平方根等于某数的绝对值,即 =|a|= 4.非负数的积的算术平方根等于积中各因式的算术平方根的积,即 = · (a≥0,b≥0)。5.非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即 = (a≥0,b>0)。
21.2 二次根式的乘除
1. 二次根式的乘法
两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。
说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,、都是非负数;
(2)(≥0,≥0)可以推广为(≥0,≥0); (≥0,≥0,≥0,≥0)。
(3)等式(≥0,≥0)也可以倒过来使用,即(≥0,≥0)。也称“积的算术平方根”。它与二次根式的乘法结合,可以对一些二次根式进行化简。
2. 二次根式的除法
两个二次根式相除,把被开方数相除,根指数不变,即(≥0,>0)。
说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,≥0,在分母中,因此>0;
(2)(≥0,>0)可以推广为(≥0,>0,≠0);
(3)等式(≥0,>0)也可以倒过来使用,即(≥0,>0)。也称“商的算术平方根”。它与二根式的除法结合,可以对一些二次根式进行化简。
3. 最简二次根式
一个二次根式如果满足下列两个条件:
(1)被开方数中不含能开方开得尽的因数或因式;
(2)被开方数中不含分母。
这样的二次根式叫做最简二次根式。
说明:
(1)这两个条件必须同时满足,才是最简二次根式;
(2)被开方数若是多项式,需利用因式分解法把它们化成乘积式,再进行化简;
(3)二次根式化简到最后,二次根式不能出现在分母中,即分母中要不含二次根式。
21.3 二次根式的加减
1. 同类二次根式 (1)定义:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫同类二次根式。 注:判断几个二次根式是否为同类二次根式,关键是先把二次根式准确地化成最简二次根式,再观察它们的被开方数是否相同。 (2)合并同类二次根式:合并同类二次根式的方法与合并同类项的方法类似,系数相加减,二次根号及被开方数不变。
2. 二次根式的加减 (1)二次根式的加减,先把各个二次根式化成最简二次根式,再将同类二次根式分别合并。 (2)二次根式的加减法与多项式的加减法类似,首先是化简,在化简的基础上去括号再合并同类二次根式,同类二次根式相当于同类项。 一般地,二次根式的加减法可分以下三个步骤进行: i)将每一个二次根式都化简成最简二次根式 ii)判断哪些二次根式是同类二次根式,把同类二次根式结合成一组 iii)合并同类二次根式
3. 二次根式的混合运算 二次根式的混合运算可以说是二次根式乘法、除法、加、减法则的综合应用,在进行二次根式的混合运算时应注意以下几点: (1)观察式子的结构,选择合理的运算顺序,二次根式的混合运算与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号先算括号内的。 (2)在运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式的和可以看作是“多项式”。 (3)观察式中二次根式的特点,合理使用运算律和运算性质,在实数和整式中的运算律和运算性质,在二次根式的运算中都可以应用。
4. 分母有理化 (1)我们在前面的学习中研究了分母形如 形式的分式的分母有理化 综合起来,常见的有理化因式有:① 的有理化因式为 ,② 的有理化因式为 ,③ 的有理化因式为 ,④ 的有理化因式为 ,⑤ 的有理化因式为 (2)分母有理化就是通过分子和分母同乘以分母的有理化因式,将分母中的根号去掉的过程,混合运算中进行二次根式的除法运算,一般都是通过分母有理化而进行的。
第二十二章 一元二次方程
22.1 一元二次方程
在一个等式中,只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程。
一元二次方程有四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为 ax^2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程. (4)将方程化为一般形式:ax^+bx+c=0时,应满足(a≠0)
22.2 降次——解一元二次方程
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法:
1、直接开平方法:
用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=± m.
直接开平方法就是平方的逆运算.通常用根号表示其运算结果.
2、配方法
通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
1.转化: 将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)
2.系数化1: 将二次项系数化为1
3.移项: 将常数项移到等号右侧
4.配方: 等号左右两边同时加上一次项系数一半的平方
5.变形: 将等号左边的代数式写成完全平方形式
6.开方: 左右同时开平方
7.求解: 整理即可得到原方程的根
3、公式法
公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。
22.3 实际问题与一元二次方程
列一元二次方程解应用题是列一元一次方程解应用题的继续和发展
从列方程解应用题的方法来讲,列出一元二次方程解应用题与列出一元一次方程解应用题是非常相似的,由于一元一次方程未知数是一次,因此这类问题大部分都可通过算术方法来解决.如果未知数出现二次,用算术方法就很困难了,正由于未知数是二次的,所以可以用一元二次方程解决有关面积问题,经过两次增长的平均增长率问题,数学问题中涉及积的一些问题,经营决策问题等等.
第二十三章 旋转
23.1 图形的旋转
1. 图形的旋转
(1)定义:在平面内,将一个圆形绕一个定点沿某个方向(顺时针或逆时针)转动一个角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,转动的角称为旋转角。
(2)生活中的旋转现象大致有两大类:一类是物体的旋转运动,如时钟的时针、分针、秒针的转动,风车的转动等;另一类则是由某一基本图形通过旋转而形成的图案,如香港特别行政区区旗上的紫荆花图案。
(3)图形的旋转不改变图形的大小和形状,旋转是由旋转中心和旋转角所决定,旋转中心可以在图形上也可以在图形外。
(4)会找对应点,对应线段和对应角。
2. 旋转的基本特征:
(1)图形在旋转时,图形中的每一个点都绕旋转中心旋转了同样大小的角度。
(2)图形在旋转时,对应点到旋转中心的距离相等,对应线段相等,对应角相等;
(3)图形在旋转时,图形的大小和形状都没有发生改变。
3. 几点说明:
(1)在理解旋转特征时,首先要对照图形,找出旋转中心、旋转方向、对应点、旋转角。
(2)旋转的角度是对应线段的夹角或对应顶点与旋转中心连线的夹角。
(3)旋转中心的确定分两种情况,即在图形上或在图形外,若在图形上,哪一点旋转过程中位置没有改变,哪一点就是旋转中心;若在图形外,对应点连线的垂直平分线的交点就是旋转中心。
23.2 中心对称
中心对称:把一个图形绕着某一点旋转180°,假如它能够与另一个图形重合,那么这刘遇图形关于这个点对称或中心对称。
中心对称的性质:①关于中心对称的刘遇图形,对应点所连线段都经过对称中心,而且被对称中心所平分。②关于中心对称的刘遇图形是全等形。
中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。
对称点的坐标规律:①关于x轴对称:横坐标不变,纵坐标互为相反数,②关于y轴对称:横坐标互为相反数,纵坐标不变,③关于原点对称:横坐标、纵坐标都互为相反数。
23.3 课题学习 图案设计
灵活运用平移、旋转、轴对称等变换进行图案设计.
图案设计就是通过图形变换(平移、旋转、轴对称或几种的组合)把基本图形组成具有一定意义的新图形,图案设计时不仅要看是否正确使用了图形变换,还要看图案是否很好的体现了设计意图.
第二十四章 圆
24.1 圆
定义:(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。
(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
圆心:(1)如定义(1)中,该定点为圆心
(2)如定义(2)中,绕的那一端的端点为圆心。
(3)圆任意两条对称轴的交点为圆心。
(4) 垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。
注:圆心一般用字母O表示
直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。
圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。
直径所对的圆周角是直角。90°的圆周角所对的弦是直径。
圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2,用字母S表示。
一条弧所对的圆周角是圆心角的二分之一。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。
周长计算公式
1.、已知直径:C=πd
2、已知半径:C=2πr
3、已知周长:D=c\π
4、圆周长的一半:1\2周长(曲线)
5、半圆的长:1\2周长+直径
面积计算公式:
1、已知半径:S=πr平方
2、已知直径:S=π(d\2)平方
3、已知周长:S=π(c\2π)平方
24.2 点、直线、圆和圆的位置关系
1. 点和圆的位置关系
① 点在圆内点到圆心的距离小于半径
② 点在圆上点到圆心的距离等于半径
③ 点在圆外点到圆心的距离大于半径
2. 过三点的圆
不在同一直线上的三个点确定一个圆。
3. 外接圆和外心
经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。
外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心。
4. 直线和圆的位置关系
相交:直线和圆有两个公共点叫这条直线和圆相交,这条直线叫做圆的割线。
相切:直线和圆有一个公共点叫这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点。
相离:直线和圆没有公共点叫这条直线和圆相离。
5. 直线和圆位置关系的性质和判定
如果⊙O的半径为r,圆心O到直线的距离为d,那么
① 直线和⊙O相交;
② 直线和⊙O相切;
③ 直线和⊙O相离。
圆和圆
定义:
两个圆没有公共点且每个圆的点都在另一个圆的外部时,叫做这两个圆的外离。
两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的外部,叫做两个圆的外切。
两个圆有两个交点,叫做两个圆的相交。
两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的内部,叫做两个圆的内切。
两个圆没有公共点且每个圆的点都在另一个圆的内部时,叫做这两个圆的内含。
原理:
圆心距和半径的数量关系:
两圆外离<=> d>R+r
两圆外切<=> d=R+r
两圆相交<=> R-r<d=r)
两圆内切<=> d=R-r(R>r)
两圆内含<=> dr)
推荐文章
四川高考排名125230左右排位文科可以上哪些大学,具体能上什么大学2024-06-04 12:57:05
西南交通大学希望学院和北京农学院哪个好 附对比和区别排名2024-06-04 12:53:13
广东高考排名249380左右排位物理可以上哪些大学,具体能上什么大学2024-06-04 12:50:07
黑龙江高考排名20460左右排位理科可以上哪些大学,具体能上什么大学2024-06-04 12:46:59
湖北高考排名115550左右排位物理可以上哪些大学,具体能上什么大学2024-06-04 12:43:10
长春师范大学和广州大学哪个好 附对比和区别排名2024-06-04 12:39:13
最新高一数学教案模板范文2023-08-16 01:17:52
最新5.12国际护士节主题征文800字五篇2023-08-16 22:46:59
中考物理第五章冀教版相关习题整理2023-08-13 11:19:01
八年级月考作文范文五篇2023-08-13 09:02:42
中考物理第五章冀教版相关习题整理2023-08-13 11:19:01
中考物理第十二章苏教版课后练习最新2023-08-26 01:53:50
中考物理第十四章练习题2023-08-14 23:28:26
2024广安中考分数线查询公布多少分,历年广安中考分数线2023-08-14 05:50:57
2024宜宾中考分数线查询公布多少分,历年宜宾中考分数线2023-08-16 05:36:57
2024南充中考分数线查询公布多少分,历年南充中考分数线2023-08-15 18:03:26