学文网

初中数学考点华师大版

时间:2023-08-19 01:33:33 文/黄飞老师 中考学文网www.xuewenya.com

初中数学考点华师大版1

1、定义:顶点在圆上,角的两边都与圆相交的角。(两条件缺一不可)

2、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

3、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。

2)直径(半圆)所对的圆周角是直角;900的圆周角所对的弦为直径。(①常见辅助线:有直径可构成直角,有900圆周角可构成直径;②找圆心的方法:作两个900圆周角所对两弦交点)

4、圆内接四边形的性质定理:圆内接四边形的对角互补。(任意一个外角等于它的内对角)

补充:1、两条平行弦所夹的弧相等。

2、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。

3、同弧所对的(在弧的同侧)圆内部角其次是圆周角,最小的是圆外角。

初中数学考点华师大版2

1.概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。

说明:(1)图形的旋转是由旋转中心和旋转的角度所决定的;(2)旋转过程中旋转中心始终保持不动.(3)旋转过程中旋转的方向是相同的.(4)旋转过程静止时,图形上一个点的旋转角度是一样的.⑤旋转不改变图形的大小和形状.

2.性质:(1)对应点到旋转中心的距离相等;

(2)对应点与旋转中心所连线段的夹角等于旋转角;

(3)旋转前、后的图形全等.

3.旋转作图的步骤和方法:(1)确定旋转中心及旋转方向、旋转角;(2)找出图形的关键点;(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形.

说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角.

初中数学考点华师大版3

①直线和圆无公共点,称相离。AB与圆O相离,d>r。

②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d

③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离)

平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:

1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程

如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1

当x=-C/Ax2时,直线与圆相离;

初中数学考点华师大版4

配方法的应用

对所有一元二次方程都适用,但特别对于二次项系数为1,一次项系数为偶数的一元二次方程用配方法会更为简单。

【配方法】

一般步骤:

第一步:使方程左边为二次项和一次项,右边为常数项;

第二步:方程两边同时除以二次项系数;

第三步:方程两边都加上一次项系数一半的平方,把原方程化为的形式;

第四步:用直接开平方解变形后的方程.

古希腊数学家丢番图(公元250年前后)在《算术》中就提到了一元二次方程的问题,不过当时古希腊人还没有寻求到它的求根公式,只能用图解等方法来求解.在欧几里得的《几何原本》中,形如x2+ax=b2(a>0,b>0)的方程的图解法是:以和b为两直角边作Rt△ABC,再在斜边上截取BD=,则AD的长就是所求方程的解.

注意:

1.一元二次方程得一般形式特点为方程右边是0,方程左边是关于x的二次整式。

2.“a≠0”是一元二次方程的一个重要组成部分,也是它的一个判断标准之一,但b、c可以为0。若没有出现bx,则b=0;没有出现c,则c=0。

3.可以通过“去分母,去括号,移项,合并同类项”等步骤得到一元二次方程得一般形式。

【因式分解法】

一般步骤:

第一步:将已知方程化为一般形式,使方程右端为0;

第二步:将左端的二次三项式分解为两个一次因式的积;

第三步:方程左边两个因式分别为0,得到两个一次方程,它们的解就是原方程的解。

初中数学考点华师大版5

第一章证明

一、等腰三角形

1、定义:有两边相等的三角形是等腰三角形。

2、性质:1.等腰三角形的两个底角相等(简写成“等边对等角”)

2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(“三线合一”)

3.等腰三角形的两底角的平分线相等。(两条腰上的中线相等,两条腰上的高相等)

4.等腰三角形底边上的垂直平分线上的点到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半

6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(可用等面积法证)

7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴

3、判定:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。

特殊的等腰三角形

等边三角形

1、定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形。

(注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。

2、性质:⑴等边三角形的内角都相等,且均为60度。

⑵等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。

⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。

3、判定:⑴三边相等的三角形是等边三角形。

⑵三个内角都相等的三角形是等边三角形。

⑶有一个角是60度的等腰三角形是等边三角形。

⑷有两个角等于60度的三角形是等边三角形。

二、直角三角形全等

1、直角三角形全等的判定有5种:

(1)、两角及其夹边对应相等的两个三角形全等;(ASA)

(2)、两边及其夹角对应相等的两个三角形全等;(SAS)

(3)、三边对应相等的两个三角形全等;(SSS)

(4)、两角及其中一角的对边对应相等的两个三角形全等;(AAS)

(5)、斜边及一条直角边对应相等的两个三角形全等;(HL)

2、在直角三角形中,如有一个内角等于30o,那么它所对的直角边等于斜边的一半

3、在直角三角形中,斜边上的中线等于斜边的一半

4垂直平分线:垂直于一条线段并且平分这条线段的直线。

性质:线段垂直平分线上的点到这一条线段两个端点距离相等。

判定:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。

5、三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等,交点为三角形的外心。

6、角平分线上的点到角两边的距离相等。

7、在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。

8、角平分线是到角的两边距离相等的所有点的集合。

9、三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。

10、三角形三条中线交于一点,交点为三角形的重心。

11、三角形三条高线交于一点,交点为三角形的垂心。

三、平行四边的定义

1、定义:两线对边分别平行的四边形叫做平行四边形,

2、性质:(1)平行四边形的对边相等,(2)对角相等,(3)对角线互相平分。

3、判定:(1)一组对边平行且相等的四边形是平行四边形。

(2)两条对角线互相平分的四边形是平行四边形。

(3)两组对边分别相等的四边形是平行四边形。

(4)两组对角分别相等的四边形是平行四边形。

(5)一组对边平行,一组对角相等的四边形是平行四边形。

(6)一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形。

两个假命题:(1)一组对边平行,另一组对边相等的四边形是平行四边形。

(2)一组对边相等,一组对角相等的四边形是平行四边形。

四、矩形

1、定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。

2、性质:(1)具有平行四边形的性质,(2)对角线相等,(3)四个角都是直角。

(4)矩形是轴对称图形,有两条对称轴。

3、判定:(1)有三个角是直角的四边形是矩形。

(2)对角线相等的平行四边形是矩形。

五、菱形

1、定义:一组邻边相等的平行四边形叫做菱形。

2、性质:(1)具有平行四边形的性质,(2)四条边都相等,(3)两条对角线互相垂直,每一条对角线平分一组对角。(4)菱形是轴对称图形,每条对角线所在的直线都是对称轴。

3、判定:(1)四条边都相等的四边形是菱形。

(2)对角线互相垂直的平行四边形是菱形。

(3)一条对角线平分一组对角的平行四边形是菱形。

六、正方形

1、定义:一组邻边相等且有一个角是直角的平行四边形叫做正方形。

2、性质:正方形具有平行四边形、矩形、菱形的一切性质。

3、判定:(1)有一个内角是直角的菱形是正方形;

(2)有一组邻边相等的矩形是正方形;

(3)对角线相等的菱形是正方形;

(4)对角线互相垂直的矩形是正方形。

七、梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形

八、等腰梯形

1、定义:两条腰相等的梯形叫做等腰梯形。

2、性质:等腰梯形同一底上的两个内角相等,对角线相等。

3、同一底上的两个内角相等的梯形是等腰梯形。

九、三角形的中位线

定义:连接三角形两边中点的线段。

性质:平行于第三边,并且等于第三边的一半。

十、梯形的中位线

定义:连接梯形两腰中点的线段。

性质:平行于两底,并且等于两底和的一半。

推荐文章

四川高考排名125230左右排位文科可以上哪些大学,具体能上什么大学2024-06-04 12:57:05

西南交通大学希望学院和北京农学院哪个好 附对比和区别排名2024-06-04 12:53:13

广东高考排名249380左右排位物理可以上哪些大学,具体能上什么大学2024-06-04 12:50:07

黑龙江高考排名20460左右排位理科可以上哪些大学,具体能上什么大学2024-06-04 12:46:59

湖北高考排名115550左右排位物理可以上哪些大学,具体能上什么大学2024-06-04 12:43:10

长春师范大学和广州大学哪个好 附对比和区别排名2024-06-04 12:39:13

青春高三话题作文800字五篇2023-08-15 18:15:45

同步练习数学六年级必备2023-08-10 11:41:44

昆明市生物中考考点2023-08-26 19:10:58

我的妈妈作文写人450字7篇2023-08-13 17:51:03

昆明市生物中考考点2023-08-26 19:10:58

云南省中考生物真题答案分享2023-08-11 13:43:08

上海中考数学真题答案大全2023-08-10 19:59:15

2024广安中考分数线查询公布多少分,历年广安中考分数线2023-08-14 05:50:57

2024宜宾中考分数线查询公布多少分,历年宜宾中考分数线2023-08-16 05:36:57

2024南充中考分数线查询公布多少分,历年南充中考分数线2023-08-15 18:03:26

最新文章