高三理科数学知识点复习
数列
1、数列的通项与数列的前n项和的关系:an??S1 (n?1)。 Sn?Sn?1 (n?2)
m?n?p?q?am?an?ap?aq.2、等差数列通项公式:an?a1?(n?1)d?am?(n?m)d;
前n项和公式:Sn?n(a1?an)n(n?1)d ?na1?22
3、等比数列通项公式:an?a1qn?1?amqn?m; m?n?p?q?am?an?ap?aq.
?na1 (q?1)?前n项和公式: Sn??a1(1?qn) (q?1)?1?q?
4、常用裂项形式有:??; ?(?);
? 1、等比数列?an?中,a4?4,则a2?a6等于( )
A.4 B.8 C.16 D.32
2、公差不为零的等差数列{an}的前n项和为Sn.若a4是a3与a7的等比中项, S8?32,则S10等于 ( ) A. 18 B. 24 C. 60 D. 90 .3、数列{an}的前n项和记为Sn,a1?t,点(Sn,an?1)在直线y?2x?1上,n?N?. (Ⅰ)当实数t为何值时,数列{an}是等比数列?(Ⅱ)在(Ⅰ)的结论下,设bn?log3an?1,Tn是数列{
1的前n项和,求T2011的值. bn?bn?1
立体几何
( )
A 若m??,???,则m?? B若????m,????n,m?n,则???
C 若 ???,???,则??? D 若 m??,m??,则???
2、给定下列四个命题:
①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;
②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;
③垂直于同一直线的两条直线相互平行;
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是
A.①和② B.②和③ C.③和④ D.②和④
1、若m、n是两条不同的直线, ?、?、?是三个不同的平面,则下列命题中为真命题的是
2
第2 / 4页
3、一个多面体的直观图及三视图
如图所示(其中M、N分别表示是
AF、BF的点)
(1)求证:MN∥平面CDEF;
(2)求二面角A—CF—B的余弦值;
(3)求多面体A—CDEF的体积。
3
圆锥曲线
x2y2x1、2?2?1的一条渐近线方程为?y?0.则此双曲线的离心率为 ( ) ab3
A
. 10 B
. 3 C
. D
2、已知椭圆C以坐标原点为中心,坐标轴为对称轴,且椭圆C以抛物线x2?16y的焦点为焦点,y2x2
以双曲线??1的焦点为顶点,则椭圆C的标准方程为 169
3、已知圆:.
,且与圆交于、两点,若,设,求直线的方程; 与轴的交点为
,若向量 (1)直线过点 (2)过圆上一动点,求动点作平行于轴的直线的轨迹方程,并说明此轨迹是什么曲线.
高一数学知识点整理
一次函数
一、定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)
二、一次函数的性质:
1.y的变化值与对应的x的变化值成正比例,比值为k
即:y=kx+b(k为任意不为零的实数b取任何实数)
2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限
四、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②
(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:
1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
六、常用公式:
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:|x1-x2|/2
3.求与y轴平行线段的中点:|y1-y2|/2
4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2(注:根号下(x1-x2)与(y1-y2)的平方和)
直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,。当时,;当时,不存在。
②过两点的直线的斜率公式:
注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
高二理科数学知识点总结整理
考点一:向量的概念、向量的基本定理
【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。
注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。
考点二:向量的运算
【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。
【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。
考点三:定比分点
【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。
【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。由于向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。
考点四:向量与三角函数的综合问题
【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。
【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。
考点五:平面向量与函数问题的交汇
【内容解读】平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。
【命题规律】命题多以解答题为主,属中档题。
考点六:平面向量在平面几何中的应用
【内容解读】向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起.因此,许多平面几何问题中较难解决的问题,都可以转化为大家熟悉的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,赋予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.
【命题规律】命题多以解答题为主,属中等偏难的试题。
推荐文章
河南高考排名195560左右排位理科可以上哪些大学,具体能上什么大学2024-06-08 12:22:13
吉林外国语大学和湘潭大学兴湘学院哪个好 附对比和区别排名2024-06-08 12:17:15
江西工商职业技术学院在黑龙江高考历年录戎数线(2024届参考)2024-06-08 12:13:44
甘肃高考排名5480左右排位理科可以上哪些大学,具体能上什么大学2024-06-08 12:10:50
四川文化艺术学院和天津城建大学哪个好 附对比和区别排名2024-06-08 12:07:58
江西高考排名71510左右排位理科可以上哪些大学,具体能上什么大学2024-06-08 12:05:17
七年级政治理论课教学总结报告2023-08-27 16:43:02
新学期高中生物教学设计五篇2023-08-12 18:41:36
高中数学必修五知识点必备总结2023-08-24 12:38:54
九年级历史与社会复习教案范文2023-08-20 00:29:44
高中数学必修五知识点必备总结2023-08-24 12:38:54
高中数学必修四知识点总结必备2023-08-10 21:10:33
高中数学必修三知识点必看归纳2023-08-15 01:13:00
新版北师大版二年级下册数学教案最新模板2023-08-12 05:23:58
最新一年级数学跷跷板教案模板2023-08-25 18:57:41
二年级下册数学统计教案文案2023-08-22 19:25:47