学文网

高三数学同步练习题详细答案

时间:2023-08-25 11:39:52 文/莉落老师 数学学文网www.xuewenya.com

高三数学练习题答案

一、选择题

1.z=x-y在2x-y+1≥0x-2y-1≤0x+y≤1的线性约束条件下,取得值的可行解为()

A.(0,1)B.(-1,-1)

C.(1,0)D.(12,12)

解析:选C.可以验证这四个点均是可行解,当x=0,y=1时,z=-1;当x=-1,y=-1时,z=0;当x=1,y=0时,z=1;当x=12,y=12时,z=0.排除A,B,D.

2.(2010年高考浙江卷)若实数x,y满足不等式组x+3y-3≥0,2x-y-3≤0,x-y+1≥0,则x+y的值为()

A.9B.157

C.1D.715

解析:选A.画出可行域如图:

令z=x+y,可变为y=-x+z,

作出目标函数线,平移目标函数线,显然过点A时z.

由2x-y-3=0,x-y+1=0,得A(4,5),∴zmax=4+5=9.

3.在△ABC中,三顶点分别为A(2,4),B(-1,2),C(1,0),点P(x,y)在△ABC内部及其边界上运动,则m=y-x的取值范围为()

A.[1,3]B.[-3,1]

C.[-1,3]D.[-3,-1]

解析:选C.直线m=y-x的斜率k1=1≥kAB=23,且k1=1

∴直线经过C时m最小,为-1,

经过B时m,为3.

4.已知点P(x,y)在不等式组x-2≤0y-1≤0x+2y-2≥0表示的平面区域内运动,则z=x-y的取值范围是()

A.[-2,-1]B.[-2,1]

C.[-1,2]D.[1,2]

解析:选C.先画出满足约束条件的可行域,如图阴影部分,

∵z=x-y,∴y=x-z.

由图知截距-z的范围为[-2,1],∴z的范围为[-1,2].

5.设动点坐标(x,y)满足?x-y+1??x+y-4?≥0,x≥3,y≥1.则x2+y2的最小值为()

A.5B.10

C.172D.10

解析:选D.画出不等式组所对应的平面区域,由图可知当x=3,y=1时,x2+y2的最小值为10.

6.(2009年高考四川卷)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A原料不超过13吨、B原料不超过18吨,那么该企业可获得的利润是()

A.12万元B.20万元

C.25万元D.27万元

解析:选D.设生产甲产品x吨、乙产品y吨,则获得的利润为z=5x+3y.

由题意得

x≥0,y≥0,3x+y≤13,2x+3y≤18,可行域如图阴影所示.

由图可知当x、y在A点取值时,z取得值,此时x=3,y=4,z=5×3+3×4=27(万元).

高三练习题数学答案

1.若不等式x2-2ax+a>0对一切实数x∈R恒成立,则关于t的不等式at2+2t-3<1的解集为()

A.(-3,1)B.(-∞,-3)∪(1,+∞)

C.?D.(0,1)

解析:不等式x2-2ax+a>0对一切实数x∈R恒成立,则Δ=(-2a)2-4a<0,即a2-a<0,解得0

所以不等式at2+2t-3<1转化为t2+2t-3>0,解得t<-3或t>1,故选B.

答案:B

2.若不等式组x2-2x-3≤0,x2+4x-?1+a?≤0的解集不是空集,则实数a的取值范围是()

A.(-∞,-4]B.[-4,+∞)

C.[-4,20]D.[-40,20)

解析:设f(x)=x2+4x-(1+a),根据已知可转化为存在x0∈[-1,3]使f(x0)≤0.易知函数f(x)在区间[-1,3]上为增函数,故只需f(-1)=-4-a≤0即可,解得a≥-4.

答案:B

3.(2013?江苏)已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2-4x,则不等式f(x)>x的解集用区间表示为________.

解析:∵f(x)是定义在R上的奇函数,

∴f(0)=0,

又当x<0时,-x>0,

∴f(-x)=x2+4x.

又f(x)为奇函数,∴f(-x)=-f(x),

∴f(x)=-x2-4x(x<0),

∴f(x)=x2-4x,x>0,0,x=0,-x2-4x,x<0.

(1)当x>0时,由f(x)>x得x2-4x>x,解得x>5;

(2)当x=0时,f(x)>x无解;

(3)当x<0时,由f(x)>x得-x2-4x>x,

解得-5

综上得不等式f(x)>x的解集用区间表示为(-5,0)∪(5,+∞).

答案:(-5,0)∪(5,+∞)

4.已知f(x)=-3x2+a(6-a)x+b.

(1)解关于a的不等式f(1)>0;

(2)若不等式f(x)>0的解集为(-1,3),求实数a,b的值.

解:(1)∵f(1)>0,∴-3+a(6-a)+b>0,

即a2-6a+3-b<0.

Δ=(-6)2-4(3-b)=24+4b.

①当Δ≤0,即b≤-6时,原不等式的解集为?.

②当Δ>0,即b>-6时,

方程a2-6a+3-b=0有两根a1=3-6+b,

a2=3+6+b,

∴不等式的解集为(3-6+b,3+6+b).

综上所述:当b≤-6时,原不等式的解集为?;

当b>-6时,原不等式的解集为(3-6+b,3+6+b).

(2)由f(x)>0,得-3x2+a(6-a)x+b>0,

即3x2-a(6-a)x-b<0.∵它的解集为(-1,3),

∴-1与3是方程3x2-a(6-a)x-b=0的两根.

∴-1+3=a?6-a?3,-1×3=-b3,

解得a=3-3,b=9或a=3+3,b=9.

高三数学练习参考答案

1.若xy>0,则对xy+yx说法正确的是()

A.有值-2B.有最小值2

C.无值和最小值D.无法确定

答案:B

2.设x,y满足x+y=40且x,y都是正整数,则xy的值是()

A.400B.100

C.40D.20

答案:A

3.已知x≥2,则当x=____时,x+4x有最小值____.

答案:24

4.已知f(x)=12x+4x.

(1)当x>0时,求f(x)的最小值;

(2)当x<0时,求f(x)的值.

解:(1)∵x>0,∴12x,4x>0.

∴12x+4x≥212x?4x=83.

当且仅当12x=4x,即x=3时取最小值83,

∴当x>0时,f(x)的最小值为83.

(2)∵x<0,∴-x>0.

则-f(x)=12-x+(-4x)≥212-x??-4x?=83,

当且仅当12-x=-4x时,即x=-3时取等号.

∴当x<0时,f(x)的值为-83.

一、选择题

1.下列各式,能用基本不等式直接求得最值的是()

A.x+12xB.x2-1+1x2-1

C.2x+2-xD.x(1-x)

答案:C

2.函数y=3x2+6x2+1的最小值是()

A.32-3B.-3

C.62D.62-3

解析:选D.y=3(x2+2x2+1)=3(x2+1+2x2+1-1)≥3(22-1)=62-3.

3.已知m、n∈R,mn=100,则m2+n2的最小值是()

A.200B.100

C.50D.20

解析:选A.m2+n2≥2mn=200,当且仅当m=n时等号成立.

4.给出下面四个推导过程:

①∵a,b∈(0,+∞),∴ba+ab≥2ba?ab=2;

②∵x,y∈(0,+∞),∴lgx+lgy≥2lgx?lgy;

③∵a∈R,a≠0,∴4a+a≥24a?a=4;

④∵x,y∈R,,xy<0,∴xy+yx=-[(-xy)+(-yx)]≤-2?-xy??-yx?=-2.

其中正确的推导过程为()

A.①②B.②③

C.③④D.①④

解析:选D.从基本不等式成立的条件考虑.

①∵a,b∈(0,+∞),∴ba,ab∈(0,+∞),符合基本不等式的条件,故①的推导过程正确;

②虽然x,y∈(0,+∞),但当x∈(0,1)时,lgx是负数,y∈(0,1)时,lgy是负数,∴②的推导过程是错误的;

③∵a∈R,不符合基本不等式的条件,

∴4a+a≥24a?a=4是错误的;

④由xy<0得xy,yx均为负数,但在推导过程中将全体xy+yx提出负号后,(-xy)均变为正数,符合基本不等式的条件,故④正确.

5.已知a>0,b>0,则1a+1b+2ab的最小值是()

A.2B.22

C.4D.5

解析:选C.∵1a+1b+2ab≥2ab+2ab≥22×2=4.当且仅当a=bab=1时,等号成立,即a=b=1时,不等式取得最小值4.

6.已知x、y均为正数,xy=8x+2y,则xy有()

A.值64B.值164

C.最小值64D.最小值164

解析:选C.∵x、y均为正数,

∴xy=8x+2y≥28x?2y=8xy,

当且仅当8x=2y时等号成立.

∴xy≥64.

二、填空题

7.函数y=x+1x+1(x≥0)的最小值为________.

答案:1

8.若x>0,y>0,且x+4y=1,则xy有最________值,其值为________.

解析:1=x+4y≥2x?4y=4xy,∴xy≤116.

答案:大116

9.(2010年高考山东卷)已知x,y∈R+,且满足x3+y4=1,则xy的值为________.

解析:∵x>0,y>0且1=x3+y4≥2xy12,∴xy≤3.

当且仅当x3=y4时取等号.

答案:3

三、解答题

10.(1)设x>-1,求函数y=x+4x+1+6的最小值;

(2)求函数y=x2+8x-1(x>1)的最值.

解:(1)∵x>-1,∴x+1>0.

∴y=x+4x+1+6=x+1+4x+1+5

≥2?x+1??4x+1+5=9,

当且仅当x+1=4x+1,即x=1时,取等号.

∴x=1时,函数的最小值是9.

(2)y=x2+8x-1=x2-1+9x-1=(x+1)+9x-1

=(x-1)+9x-1+2.∵x>1,∴x-1>0.

∴(x-1)+9x-1+2≥2?x-1??9x-1+2=8.

当且仅当x-1=9x-1,即x=4时等号成立,

∴y有最小值8.

11.已知a,b,c∈(0,+∞),且a+b+c=1,求证:(1a-1)?(1b-1)?(1c-1)≥8.

证明:∵a,b,c∈(0,+∞),a+b+c=1,

∴1a-1=1-aa=b+ca=ba+ca≥2bca,

同理1b-1≥2acb,1c-1≥2abc,

以上三个不等式两边分别相乘得

(1a-1)(1b-1)(1c-1)≥8.

当且仅当a=b=c时取等号.

12.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁忽略不计).

问:污水处理池的长设计为多少米时可使总价最低.

解:设污水处理池的长为x米,则宽为200x米.

总造价f(x)=400×(2x+2×200x)+100×200x+60×200

=800×(x+225x)+12000

≥1600x?225x+12000

=36000(元)

当且仅当x=225x(x>0),

即x=15时等号成立.

推荐文章

河南高考排名195560左右排位理科可以上哪些大学,具体能上什么大学2024-06-08 12:22:13

吉林外国语大学和湘潭大学兴湘学院哪个好 附对比和区别排名2024-06-08 12:17:15

江西工商职业技术学院在黑龙江高考历年录戎数线(2024届参考)2024-06-08 12:13:44

甘肃高考排名5480左右排位理科可以上哪些大学,具体能上什么大学2024-06-08 12:10:50

四川文化艺术学院和天津城建大学哪个好 附对比和区别排名2024-06-08 12:07:58

江西高考排名71510左右排位理科可以上哪些大学,具体能上什么大学2024-06-08 12:05:17

关于七年级上学期生物教学设计2023-08-18 10:10:23

初二政治教学计划五篇2023-08-23 09:12:22

关于七年级历史备课组教学计划2023-08-15 08:50:38

同步练习数学七年级下册答案2023-08-24 21:55:30

同步练习数学七年级下册答案2023-08-24 21:55:30

数学教师个人教学总结范文2023-08-20 06:21:21

高中数学必修知识点大全总结2023-08-11 08:10:04

新版北师大版二年级下册数学教案最新模板2023-08-12 05:23:58

最新一年级数学跷跷板教案模板2023-08-25 18:57:41

二年级下册数学统计教案文案2023-08-22 19:25:47

最新文章