高二数学寒假作业答案
1.(浙江高考)已知i是虚数单位,则(-1+i)(2-i)=()
A.-3+iB.-1+3iC.-3+3iD.-1+i
解析:选B(-1+i)(2-i)=-1+3i.
2.(北京高考)在复平面内,复数i(2-i)对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限
解析:选Az=i(2-i)=2i-i2=1+2i,
复数z在复平面内的对应点为(1,2),在第一象限.
3.若(x-i)i=y+2i,x,yR,则复数x+yi=()
A.-2+iB.2+iC.1-2iD.1+2i
解析:选B由(x-i)i=y+2i,得xi+1=y+2i.
x,yR,x=2,y=1,故x+yi=2+i.
4.(新课标全国卷)若复数z满足(3-4i)z=|4+3i|,则z的虚部为()
A.-4B.-C.4D.
解析:选D因为|4+3i|==5,所以已知等式为(3-4i)z=5,即z=====+i,所以复数z的虚部为.
5.(陕西高考)设z是复数,则下列命题中的假命题是()
A.若z2≥0,则z是实数B.若z2<0,则z是虚数
C.若z是虚数,则z2≥0D.若z是纯虚数,则z2<0
解析:选C设z=a+bi(a,bR),则z2=a2-b2+2abi,由z2≥0,得则b=0,故选项A为真,同理选项B为真;而选项D为真,选项C为假.故选C.
高二数学寒假作业练习题答案
1.B【解析】是偶函数的是选项B、C、D中的函数,但在(0,+∞)上单调递增的函数只有选项B中的函数.
2.A【解析】根据意得log(2x+1)>0,即0<2x+1<1,解得x.故选A.
3.B【解析】由f(-x)=f(x)可知函数为偶函数,其图象关于y轴对称,可以结合选项排除A、C,再利用f(x+2)=f(x),可知函数为周期函数,且T=2,必满足f(4)=f(2),排除D,故只能选B.
4.B【解析】由知00,故函数f(x)在[1,+∞)上单调递增.又f=f=f,f=f=f,<<,故f1时,结合10时,根据lnx>1,解得x>e;当x<0时,根据x+2>1,解得-10时,y=lnx,当x<0时,y=-ln(-x),因为函数y=是奇函数,图象关于坐标原点对称.故只有选项B中的图象是可能的.
2.C【解析】f(x-2)=f(x+2)f(x)=f(x+4),41,故f(a)=|lga|=-lga,f(b)=|lgb|=lgb,由f(a)=f(b),得-lga=lgb,即lg(ab)=0,故ab=1,所以2a+b≥2=2,当且仅当2a=b,即a=,b=时取等号.
5.A【解析】方法1:作出函数f(x)的示意图如图,则log4x>或log4x<-,解得x>2或02等价于不等式f(|log4x|)>2=f,即|log4x|>,即log4x>或log4x<-,解得x>2或00,所以a的取值范围是.
7.【解析】由于函数y=f(cosx)的定义域是(kZ),所以u=cosx的值域是,所以函数y=f(x)的定义域是.
8.(1)(2)(3)【解析】由f(x)=f(x+3)f(x)为周期函数;又y=f为奇函数,所以y=f图象关于(0,0)对称;y=f向左平移个单位得y=f(x)的图象,原来的原点(0,0)变为,所以f(x)的图象关于点对称.又y=f为奇函数,所以f=-f,故f=-f=-f(-x)f(-x)=f(x),所以f(x)为偶函数;又f(x)为R上的偶函数,不可能为R上的单调函数.
高二数学寒假作业检测题答案
1.在5的二项展开式中,x的系数为()
A.10B.-10C.40D.-40
解析:选DTr+1=C(2x2)5-rr=(-1)r·25-r·C·x10-3r,
令10-3r=1,得r=3.所以x的系数为(-1)3·25-3·C=-40.
2.在(1+)2-(1+)4的展开式中,x的系数等于()
A.3B.-3C.4D.-4
解析:选B因为(1+)2的展开式中x的系数为1,(1+)4的展开式中x的系数为C=4,所以在(1+)2-(1+)4的展开式中,x的系数等于-3.
3.(全国高考)(1+x)8(1+y)4的展开式中x2y2的系数是()
A.56B.84C.112D.168
解析:选D(1+x)8展开式中x2的系数是C,(1+y)4的展开式中y2的系数是C,根据多项式乘法法则可得(1+x)8(1+y)4展开式中x2y2的系数为CC=28×6=168.
4.5的展开式中各项系数的和为2,则该展开式中常数项为()
A.-40B.-20C.20D.40
解析:选D由题意,令x=1得展开式各项系数的和为(1+a)·(2-1)5=2,a=1.
二项式5的通项公式为Tr+1=C(-1)r·25-r·x5-2r,
5展开式中的常数项为x·C(-1)322·x-1+·C·(-1)2·23·x=-40+80=40.
5.在(1-x)n=a0+a1x+a2x2+a3x3+…+anxn中,若2a2+an-3=0,则自然数n的值是()
A.7B.8C.9D.10
解析:选B易知a2=C,an-3=(-1)n-3·C=(-1)n-3C,又2a2+an-3=0,所以2C+(-1)n-3C=0,将各选项逐一代入检验可知n=8满足上式.
6.设aZ,且0≤a<13,若512012+a能被13整除,则a=()
A.0B.1C.11D.12
解析:选D512012+a=(13×4-1)2012+a,被13整除余1+a,结合选项可得a=12时,512012+a能被13整除.
7.(杭州模拟)二项式5的展开式中第四项的系数为________.
解析:由已知可得第四项的系数为C(-2)3=-80,注意第四项即r=3.
答案:-808.(四川高考)二项式(x+y)5的展开式中,含x2y3的项的系数是________(用数字作答).
解析:由二项式定理得(x+y)5的展开式中x2y3项为Cx5-3y3=10x2y3,即x2y3的系数为10.
答案:10
(浙江高考)设二项式5的展开式中常数项为A,则A=________.
解析:因为5的通项Tr+1=C()5-r·r=(-1)rC_-=(-1)rCx.令15-5r=0,得r=3,所以常数项为(-1)3Cx0=-10.即A=-10.
答案:-10
10.已知(1-2x)7=a0+a1x+a2x2+…+a7x7,求:
(1)a1+a2+…+a7;
(2)a1+a3+a5+a7;
(3)a0+a2+a4+a6;
(4)|a0|+|a1|+|a2|+…+|a7|.
解:令x=1,则a0+a1+a2+a3+a4+a5+a6+a7=-1.
令x=-1,则a0-a1+a2-a3+a4-a5+a6-a7=37.
(1)∵a0=C=1,a1+a2+a3+…+a7=-2.
(2)(-)÷2,得a1+a3+a5+a7==-1094.
(3)(+)÷2,得a0+a2+a4+a6==1093.
(4)(1-2x)7展开式中a0、a2、a4、a6大于零,而a1、a3、a5、a7小于零,
|a0|+|a1|+|a2|+…+|a7|
=(a0+a2+a4+a6)-(a1+a3+a5+a7)
=1093-(-1094)=2187.
11.若某一等差数列的首项为C-A,公差为m的展开式中的常数项,其中m是7777-15除以19的余数,则此数列前多少项的和?并求出这个值.
解:设该等差数列为{an},公差为d,前n项和为Sn.
由已知得又nN_,n=2,
C-A=C-A=C-A=-5×4=100,a1=100.
7777-15=(76+1)77-15
=7677+C·7676+…+C·76+1-15
=76(7676+C·7675+…+C)-14
=76M-14(MN_),
7777-15除以19的余数是5,即m=5.
m的展开式的通项是Tr+1=C·5-rr=(-1)rC5-2rxr-5(r=0,1,2,3,4,5),
令r-5=0,得r=3,代入上式,得T4=-4,即d=-4,从而等差数列的通项公式是an=100+(n-1)×(-4)=104-4n.
设其前k项之和,则解得k=25或k=26,故此数列的前25项之和与前26项之和相等且,
S25=S26=×25=×25=1300.
12.从函数角度看,组合数C可看成是以r为自变量的函数f(r),其定义域是{r|rN,r≤n}.
(1)证明:f(r)=f(r-1);
(2)利用(1)的结论,证明:当n为偶数时,(a+b)n的展开式中最中间一项的二项式系数.
解:(1)证明:f(r)=C=,f(r-1)=C=,
f(r-1)=·=.
则f(r)=f(r-1)成立.
(2)设n=2k,f(r)=f(r-1),f(r-1)>0,=.
令f(r)≥f(r-1),则≥1,则r≤k+(等号不成立).
当r=1,2,…,k时,f(r)>f(r-1)成立.
反之,当r=k+1,k+2,…,2k时,f(r)
推荐文章
河南高考排名195560左右排位理科可以上哪些大学,具体能上什么大学2024-06-08 12:22:13
吉林外国语大学和湘潭大学兴湘学院哪个好 附对比和区别排名2024-06-08 12:17:15
江西工商职业技术学院在黑龙江高考历年录戎数线(2024届参考)2024-06-08 12:13:44
甘肃高考排名5480左右排位理科可以上哪些大学,具体能上什么大学2024-06-08 12:10:50
四川文化艺术学院和天津城建大学哪个好 附对比和区别排名2024-06-08 12:07:58
江西高考排名71510左右排位理科可以上哪些大学,具体能上什么大学2024-06-08 12:05:17
高中政治教学工作总结与反思的计划五篇2023-08-27 09:35:29
物理九年级教案模板范本2023-08-19 15:46:26
初中政治期末教学总结范文五篇2023-08-23 19:25:45
生物教师教学反思总结范文五篇2023-08-13 19:09:26
数学教学教育个人计划2023-08-10 18:01:17
六年级数学下册教学总结五篇范文2023-08-23 13:59:33
高二数学重要知识点归纳2023-08-21 07:03:08
新版北师大版二年级下册数学教案最新模板2023-08-12 05:23:58
最新一年级数学跷跷板教案模板2023-08-25 18:57:41
二年级下册数学统计教案文案2023-08-22 19:25:47