高考数学集合复习资料
1、集合的概念
集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。组成集合的对象叫元素,集合通常用大写字母A、B、C、…来表示。元素常用小写字母a、b、c、…来表示。
集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。
2、元素与集合的关系
元素与集合的关系有属于和不属于两种:元素a属于集合A,记做a∈A;元素a不属于集合A,记做a?A。
3、 集合中元素的特性
(1)确定性:设A是一个给定的集合,x是某一具体对象,则x或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。例如A={0,1,3,4},可知0∈A,6?A。
(2)互异性:“集合张的元素必须是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的”。
(3)无序性:集合与其中元素的排列次序无关,如集合{a,b,c}与集合{c,b,a}是同一个集合。
4、集合的分类
集合科根据他含有的元素个数的多少分为两类:
有限集:含有有限个元素的集合。如“方程3x+1=0”的解组成的集合”,由“2,4,6,8,组成的集合”,它们的元素个数是可数的,因此两个集合是有限集。
无限集:含有无限个元素的集合,如“到平面上两个定点的距离相等于所有点”“所有的三角形”,组成上述集合的元素不可数的,因此他们是无限集。
特别的,我们把不含有任何元素的集合叫做空集,记错F,如{x?R|+1=0}。
5、特定的集合的表示
为了书写方便,我们规定常见的数集用特定的字母表示,下面是几种常见的.数集表示方法,请牢记。
(1) 全体非负整数的集合通常简称非负整数集(或自然数集),记做N。
(2) 非负整数集内排出0的集合,也称正整数集,记做N_或N+。
(3) 全体整数的集合通常简称为整数集Z。
(4) 全体有理数的集合通常简称为有理数集,记做Q。
(5) 全体实数的集合通常简称为实数集,记做R。
高三总复习数学
1.数列的定义
按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.
(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.
(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….
(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.
(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.
2.数列的分类
(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.
(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.
3.数列的通项公式
数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是唯一的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非唯一.如:数列1,2,3,4,…,由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.
再强调对于数列通项公式的理解注意以下几点:
(1)数列的通项公式实际上是一个以正整数集N_或它的有限子集{1,2,…,n}为定义域的函数的表达式.
(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.
(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.
如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.
(4)有的数列的通项公式,形式上不一定是唯一的,正如举例中的:
(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不唯一.
4.数列的图象
对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:
序号:1234567
项:45678910
这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N_(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.
由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.
数列是一种特殊的函数,数列是可以用图象直观地表示的.
数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.
把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.
5.递推数列
一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.①
数列①还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1。
高三数学复习资料
一、 简单的线性规划问题
简单的线性规划问题是高考的热点之一,是历年高考的必考内容,主要以填空题的形式考查最优解的最值类问题的求解,高考的命题主要围绕以下几个方面:
(1) 常规的线性规划问题,即求在线性约束条件下的最值问题;
(2) 与函数、平面向量等知识结合的最值类问题;
(3) 求在非线性约束条件下的最值问题;
(4) 考查线性规划问题在解决实际生活、生产实际中的应用.而其中的第(2)(3)(4)点往往是命题的创新点。
【例1】 设函数f(θ)=?3?sin?θ+??cos?θ,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点?p(x,y)?,且0≤θ≤?π?。
(1) 若点p的坐标为12,32,求f(θ)的值;
(2) 若点p(x,y)为平面区域ω:x+y≥1,x≤1,y≤1。 上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值。
分析 第(1)问只需要运用三角函数的定义即可;第(2)问中只要先画出平面区域ω,再根据抽画出的平面区域确定角θ的取值范围,进而转化为求f(θ)=a?sin?θ+b?cos?θ型函数的最值。
解 (1) 由点p的坐标和三角函数的定义可得?sin?θ=32,?cos?θ=12。
于是f(θ)=3?sin?θ+??cos?θ=?3×32+12=2。
(2) 作出平面区域ω (即三角形区域abc)如图所示,其中a(1,0),b(1,1),?c(0,1)?.于是0≤θ≤?π?2,
又f(θ)=3?sin?θ+?cos?θ=2?sin?θ+?π?6,
且?π?6≤θ+??π?6≤?2?π?3,
故当θ+?π?6=?π?2,即θ=?π?3时,f(θ)取得最大值,且最大值等于2;
当θ+?π?6=?π?6,即θ=0时,f(θ)取得最小值,且最小值等于1。
二、 基本不等式
基本不等式是不等式的重要内容,也是历年高考重点考查的知识之一。它的应用几乎涉及高中数学的所有的章节,高考命题的重点是大小判断、求最值、求范围等.大多为填空题,试题的难度不大,近几年的高考试题中也出现了不少考查基本不等式的实际应用问题。
【例2】 心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量为1,则x 天后的存留量y?1=4x+4;若在t(t>0)天时进行第一次复习,则此时这似乎存留量比未复习情况下增加一倍(复习的时间忽略不计),其后存留量y?2随时间变化的曲线恰好为直线的一部分,其斜率为a(t+4)?2(?a
(1) 若a=-1,t=5,求“二次复习最佳时机点”;
(2) 若出现了“二次复习最佳时机点”,求a的取值范围。
分析 关键是分析图像和理解题目所表示的含义,建立函数关系,再用基本不等式求最值。
解 设第一次复习后的存留量与不复习的存留量之差为y,
由题意知,y?2=a(t+4)?2(?x-?t)+8t+4(?t>?4),
所以y=y?2-y?1=a(t+4)?2(x-t)+8t+4-4x+4(t>4)。
当a=-1,t=5时,
y=-1(5+4)?2(x-5)+85+4-4x+4
=-(x+4)81-4x+4+?1≤?-2481+1=59,
当且仅当x=14 时取等号,所以“二次复习最佳时机点”为第14天.
(2) y=a(t+4)?2(x-t)+8t+4-4x+4?=--a(x+4)(t+4)?2-?4x+4+8t+4-a(t+4)(t+4)?2?≤-2-4a(t+4)?2+?8-at+4,当且仅当-a(x+4)(t+4)?2?=4x+4?即x=2-a(t+4)-4 时取等号,
由题意2-a(t+4)-4>t,所以-4
点评 基本不等式在每年的高考中几乎是从不缺席的.,关键是要注意运用基本不等式的条件:一正、二定、三相等。
三、 不等式的求解
【例3】 对于问题:“已知关于x的不等式ax?2+bx+c>0的解集为(-1,2),解关于x的不等式ax?2-bx+c>0”,给出如下一种解法:
参考上述解法,若关于x的不等式kx+a+x+bx+c<0的解集为-1,-13∪12,1,则关于x的不等式kxax+1+bx+1cx+1<0的解集为? ? 。
分析 观察发现ax?2+?bx+?c>0将x换成?-x得??a(-x)?2+?b(-x)+c>0,则解集也相应变化,-x∈(-1,2),则?x∈?(-2,1),不等式kx+a+x+bx+c<0将x换成1x得不等式kxax+1+bx+1cx+1<0,故1x∈-1,-13∪12,1,分析可得答案。
解 由ax?2+bx+c>0的解集为(-1,2),得a(-x)?2+b(-x)+c>0的解集为(?-2?,1),即关于x的不等式ax?2-bx+c>0的解集为(-2,1)。
若关于x的不等式kx+a+x+bx+c<0的解集为-1,?-13?∪12,1
则关于x的不等式kxax+1+bx+1cx+1<0的可看成kx+a+x+bx+c<0中的x用1x代入可得,则有1x∈?-1?,-13∪12,1从而解得x∈(-3,?-1?)∪(1,2),故答案为(-3,-1)∪(1,2)。
推荐文章
河南高考排名195560左右排位理科可以上哪些大学,具体能上什么大学2024-06-08 12:22:13
吉林外国语大学和湘潭大学兴湘学院哪个好 附对比和区别排名2024-06-08 12:17:15
江西工商职业技术学院在黑龙江高考历年录戎数线(2024届参考)2024-06-08 12:13:44
甘肃高考排名5480左右排位理科可以上哪些大学,具体能上什么大学2024-06-08 12:10:50
四川文化艺术学院和天津城建大学哪个好 附对比和区别排名2024-06-08 12:07:58
江西高考排名71510左右排位理科可以上哪些大学,具体能上什么大学2024-06-08 12:05:17
高考数学考试解答技巧总结2023-08-18 19:28:00
人教版高三物理教案最新模板五篇2023-08-15 01:44:17
初一数学教学工作总结初中2023-08-26 15:37:26
人教版高一物理教学设计五篇2023-08-10 13:39:12
高考数学考试解答技巧总结2023-08-18 19:28:00
初一数学教学工作总结初中2023-08-26 15:37:26
初三数学专题解题方法技巧大全2023-08-25 06:53:08
新版北师大版二年级下册数学教案最新模板2023-08-12 05:23:58
最新一年级数学跷跷板教案模板2023-08-25 18:57:41
二年级下册数学统计教案文案2023-08-22 19:25:47