学文网

成人高考数学教案五篇最新

时间:2023-08-26 18:56:49 文/秦风学老师 数学学文网www.xuewenya.com

成人高考数学教案1

一、极限和连续

(1)极限

1.知识范围 数列极限的概念和性质

(1)数列数列极限的定义唯一性有界性四则运算法则夹逼定理,单调有界数列极限存在定理

(2)函数极限的概念和性质 函数在一点处极限的定义,左、右极限及其与极限的关系 χ趋于无穷(χ→∞,χ→+∞, χ→-∞)时函数的极限函数极限的几何意义 唯一性 四则运算法则 夹逼定理

(3)无穷小量与无穷大量无穷小量与无穷大量的定义无穷小量与无穷大量的关系,无穷小量的性质,无穷小量的比较。

(4)两个重要极限

sin x lim x = 1 x →0

1 lim 1 + x = e x →∞x

2.要求

(1)了解极限的概念(对极限定义中“ε—N”“ε—δ”“ε—M”的描述不作要求)。掌握函数在一点处的左极限与右极限以及函数在一点处极限存在的充分必要条件。

(2)了解极限的有关性质,掌握极限的四则运算法则。

(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系, 会进行无穷小量阶的比较(高阶、低阶、同阶和等价) 。会运用等价无穷小量代换求极限。

(4)熟练掌握用两个重要极限求极限的方法。

(2)连续

1.知识范围

(1)函数连续的概念 函数在一点处连续的定义 左连续和右连续 函数在一点处连续的充分必要条件 函数的 间断点

(2)函数在一点处连续的性质 连续函数的四则运算 复合函数的连续性

(3)闭区间上连续函数的性质 有界性定理 最大值与最小值定理 介值定理(包括零点定理)

(4)初等函数的连续性

2.要求

(1) 理解函数在一点处连续与间断的概念, 理解函数在一点处连续与极限存在之间的关系, 掌握函数(含分段函数)在一点处的连续性的判断方法。

(2)会求函数的间断点。

(3)掌握在闭区间上连续函数的性质,会用它们证明一些简单命题。

(4)理解初等函数在其定义区间上的连续性,会利用函数的连续性求极限。

二、一元函数微分学

(一)导数与微分

1.知识范围

(1)导数概念导数的定义左导数与右导数函数在一点处可导的充分必要条件导数的几何意义可导与连续的关系

(2)导数的四则运算法则与导数的基本公式

(3)求导方法 复合函数的求导法 隐函数的求导法 对数求导法

(4)高阶导数 高阶导数的定义 高阶导数的计算

(5)微分 微分的定义 微分与导数的关系 微分法则 一阶微分形式不变性

2.要求

(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点 处的导数。

(2)会求曲线上一点处的切线方程与法线方程。

(3)熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。

(4)掌握隐函数的求导法与对数求导法。会求分段函数的导数。

(5)了解高阶导数的概念,会求简单函数的高阶导数。

(6)理解微分的概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。

(二)导数的应用

1.知识范围

(1) 洛必达(L′Hospital)法则

(2) 函数增减性的判定法

(3) 函数极值与极值点最大值与最小值

(4) 曲线的凹凸性、拐点

(5) 曲线的水平渐近线与铅直渐近线

2.要求

(1)熟练掌握用洛必达法则求“

0 ∞ ” “ ” “0∞” “∞—∞”型未定式的极限的方法。 0 ∞

(2)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的增 减性证明简单的不等式。

(3)理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法, 会求解简单的应用问题。

(4)会判定曲线凹凸性,会求曲线的拐点。

(5)会求曲线的水平渐近线与铅直渐近线。

三、一元函数积分学

(一)不定积分

1.知识范围

(1)不定积分 原函数与不定积分的定义 不定积分的性质

(2)基本积分公式

(3)换元积分法 第一换元法(凑微分法) 第二换元法

(4)分部积分法

(5)一些简单有理函数的积分

2.要求

(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质。

(2)熟练掌握不定积分的基本公式。

(3)熟练掌握不定积分第一换元法,掌握第二换元法(仅限形如

2 2 2 2 。 ∫ a x dx、 a + x dx 的三角代换与简单的根式代换) ∫

(4)熟练掌握不定积分的分部积分法

(5)掌握简单有理函数不定积分的计算。

(二)定积分

1.知识范围

(1)定积分的概念 定积分的定义及其几何意义可积条件

(2)定积分的性质

(3)定积分的计算 变上限的定积分牛顿—莱布尼茨(Newton—Leibniz)公式换元积分法分部积分法

(4)无穷区间的广义积分、收敛、发散、计算方法

(5)定积分的应用 平面图形的面积、旋转体的体积

2.要求

(1) 理解定积分的概念与几何意义,了解可积的条件。

(2) 掌握定积分的基本性质

(3) 理解变上限的定积分是上限的函数,掌握对变上限定积分求导数的方法。

(4) 熟练掌握牛顿—莱布尼茨公式

(5) 掌握定积分的换元积分法与分部积分法。

(6) 理解无穷区间广义积分的概念,掌握其计算方法。

(7) 掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成 旋转体的体积。

四、多元函数微分学

1.知识范围

(1)多元函数 多元函数的定义 二元函数的定义域 二元函数的几何意义

(2)二元函数的极限与连续的概念

(3)偏导数与全微分 一阶偏导数 二阶偏导数 全微分

(4)复合函数的偏导数 隐函数的偏导数

(5)二元函数的无条件极值和条件极值

2.要求

(1)了解多元函数的概念,会求二元函数的定义域。了解二元函数的几何意义。

(2)了解二元函数的极限与连续的概念。

(3)理解二元函数一阶偏导数和全微分的概念,掌握二元函数的一阶偏导数的求法。掌握 二元函数的二阶偏导数的求法,掌握二元函数全微分的求法。

(4)掌握复合函数与隐函数的一阶偏导数的求法。

(5)会求二元函数的无条件极值和条件极值。

(6)会用二元函数的无条件极值及条件极值求解简单的实际问题。

五、概率论初步

1.知识范围

(1)事件及其概率 随机事件 事件的关系及其运算 概率的古典型定义 概率的性质 条件概率事件的独立性

(2)随机变量及其概率分布 随机变量的概念 随机变量的分布函数 离散型随机变量及其概率分布 (3)随机变量的数字特征 离散型随机变量的数学期望 方差 标准差

2.要求

(1) 了解随机现象、随机试验的基本特点;理解基本事件、样本空间、随机事件的概念。

(2) 掌握事件之间的关系:包含关系、相等关系、互不相容(或互斥)关系及对立关系。

(3) 理解事件之间并(和) 、交(积) 、差运算的定义,掌握其运算规律。

(4) 理解概率的古典型定义;掌握事件概率的基本性质及事件概率的计算。

(5) 会求事件的条件概念;掌握概率的乘法公式及事件的独立性。

(6) 了解随机变量的概念及其分布函数。

(7) 理解离散型随机变量的定义及其概率分布,掌握概率分布的计算方法。

(8) 会求离散型随机变量的数学期望、方差和标准差。

成人高考数学教案2

1

三角函数题

注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。

2

数列题

1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

3

立体几何题

1.证明线面位置关系,一般不需要去建系,更简单;

2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;

3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

4

概率问题

1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

2.搞清是什么概率模型,套用哪个公式;

3.记准均值、方差、标准差公式;

4.求概率时,正难则反(根据p1+p2+...+pn=1);

5.注意计数时利用列举、树图等基本方法;

6.注意放回抽样,不放回抽样;

7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;

8.注意条件概率公式;

9.注意平均分组、不完全平均分组问题。

5

圆锥曲线问题

1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;

2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;

3.战术上整体思路要保7分,争9分,想12分。

6

导数、极值、最值、不等式恒成立(或逆用求参)问题

1.先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);

2.注意最后一问有应用前面结论的意识;

3.注意分论讨论的思想;

4.不等式问题有构造函数的意识;

5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);

成人高考数学教案3

第一,复习概念。

大纲是所有考生都需要彻底理一遍的首要材料。所有的概念都须搞清记熟,查漏补缺。这是9月份之前考生应做的工作。

第二,强调做题质量。

从9月份开始,做题是考生这一段时间必须勤。加练习的重要内容。综合题、模拟题、历年真题都是最后阶段的必练题目。周老师强调,每套题都必须做完后认真分析、总结,做一套分析一套,吃透后再做下一套。反复练习、纠错,才能真正掌握。

第三,主要锻炼自己的计算能力。

周老师说,从往年学生常出现的问题来看,很多人都会将注意力集中在笔记上。从课堂上就不难看出,很多同学非常爱做笔记,却不常做题。实际上笔记对考试的用处十分有限,最主要的还是做题,必须要锻炼自己的计算能力和应用能力。许多考生习惯在最后的时间里集中看笔记,其实际功用非常有限。

第四,同样重视使用计算器。

最后两个月的时间,学生也应该熟悉一下计算器的使用

成人高考数学教案4

“解题思路”在某种程度上来说,属于理论上的“定性”,要想解具体的题目,还得有科学、合理、简便的方法,

成人高考数学选择题六大经典解题思路

有关选择题的`解法的研究,可谓是仁者见仁,智者见智。

其中不乏真知灼见,现选择部分实用性较强的方法,供参考:

1、直接法

有些选择题是由计算题、应用题、证明题、判断题改编而成的。这类题型可直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则,通过准确的运算、严谨的推理、合理的验证得出正确的结论,从而确定选择支的方法。

2、筛选法

数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的错误答案,找到符合题意的正确结论,

资料共享平台

《成人高考数学选择题六大经典解题思路》(https://www.unjs.com)。可通过筛除一些较易判定的的、不合题意的结论,以缩小选择的范围,再从其余的结论中求得正确的答案。如筛去不合题意的以后,结论只有一个,则为应选项。

3、特殊值法

有些选择题,用常规方法直接求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,或将字母参数换成具体数值代入,把一般形式变为特殊形式,再进行判断往往十分简单。

4、验证法

通过对试题的观察、分析、确定,将各选择支逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选择支正误的方法。

5、图象法

在解答选择题的过程中,可先根椐题意,作出草图,然后参照图形的作法、形状、位置、性质,综合图象的特征,得出结论。

6、试探法

对于综合性较强、选择对象比较多的试题,要想条理清楚,可以根据题意建立一个几何模型、代数构造,然后通过试探法来选择,并注意灵活地运用上述多种方法。

成人高考数学教案5

(1)代数部分:

代数历来是考试中的重点,而函数知识又是代数部分的重中之重。要掌握函数的概念,会求常见函数的定义域及函数值,会用待定系数法求函数解析式,会对函数的奇偶性和单调性进行判定。函数的重点是一次函数、二次函数、指数函数、对数函数的图象和性质。数列是代数部分的又一个重要内容。导数及其应用是近两年考试中的一个突出重点,复习的基本策略是注重运算,强调应用。导数复习的重点是:①会求多项式函数几种常见函数的导数。②利用导数的几何意义求曲线的切线方程,并能以导数为工具求函数的单调区间、极值与最大值或最小值。③解简单的实际应用问题,求最大值或最小值。

(2)三角部分:

在理解三角函数及有关概念的基础上,要掌握三角函数式的变换,包括同角三角函数之间的基本关系式,三角函数的诱导公式,两角和两角差的三角函数公式,以及二倍角的正弦、余弦、正切公式,并用公式进行计算、化简。同时,要会判断三角函数的奇偶性,会求三角函数的最小正周期和函数的单调增减区间,会求正弦函数、余弦函数的最大值和最小值、值域,尤其要会用正弦定理和余弦定理解三角形。

(3)平面解析几何部分:

解析几何是通过坐标系及直线、圆锥曲线的方程,用代数的方法研究几何问题。平面向量一章,在理解向量及相关概念的基础上,要重点掌握向量的运算法则,向量垂直与平行的充要条件。直线一章的复习重点是直线的倾斜角和斜率,直线方程的五种形式,两直线的位置关系。要求能根据已知条件来求直线方程,掌握点到直线的距离公式。圆锥曲线一章的复习重点是圆的标准方程和一般方程,直线与圆的位置关系,椭圆、双曲线以及抛物线的标准方程、图形及性质,特别要注意直线与圆锥曲线的位置关系。

(4)立体几何部分:

近年来,考试大纲对这部分的要求明显降低,考查的重点是直线与直线、直线与平面、平面与平面的各种位置关系,和有关棱柱、棱锥与球体的表面积与体积的计算等基础知识。这表明,考题中出现立体几何证明题的可能性很小,基本上是一些立体几何基本概念题或基本计算题。

(5)概率与统计初步:

排列与组合一章,应注意分类计数原理与分步计数原理的主要区别,应注意排列与组合的主要区别,牢记排列数或组合数计算公式,会解有关排列或组合的简单实际问题。在概率初步中,重点是求可能事件的概率。在统计初步中,重点是求样本的平均数与方差,及随机变量的数学期望。

推荐文章

河南高考排名195560左右排位理科可以上哪些大学,具体能上什么大学2024-06-08 12:22:13

吉林外国语大学和湘潭大学兴湘学院哪个好 附对比和区别排名2024-06-08 12:17:15

江西工商职业技术学院在黑龙江高考历年录戎数线(2024届参考)2024-06-08 12:13:44

甘肃高考排名5480左右排位理科可以上哪些大学,具体能上什么大学2024-06-08 12:10:50

四川文化艺术学院和天津城建大学哪个好 附对比和区别排名2024-06-08 12:07:58

江西高考排名71510左右排位理科可以上哪些大学,具体能上什么大学2024-06-08 12:05:17

九年级物理毕业班教学工作总结报告2023-08-13 23:59:49

小学数学教研教师教学计划五篇2023-08-15 08:28:35

关于初三物理线上教学计划五篇2023-08-24 11:43:31

初三数学教师教学反思范文五篇2023-08-12 02:31:51

小学数学教研教师教学计划五篇2023-08-15 08:28:35

初三数学教师教学反思范文五篇2023-08-12 02:31:51

数学寒假作业答案必备2023-08-17 07:48:00

新版北师大版二年级下册数学教案最新模板2023-08-12 05:23:58

最新一年级数学跷跷板教案模板2023-08-25 18:57:41

二年级下册数学统计教案文案2023-08-22 19:25:47

最新文章