学文网

正弦教学设计

时间:2023-08-28 03:43:30 文/王明刚老师 教学设计学文网www.xuewenya.com

正弦教学设计1

  教材分析这是高三一轮复习,内容是必修5第一章解三角形。本章内容准备复习两课时。本节课是第一课时。标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后应落实在解三角形的应用上。通过本节学习,学生应当达到以下学习目标:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理解三角形.(2)能够运用正弦定理、余弦定理等知识和方法判断三角形形状的问题。本章内容与三角函数、向量联系密切。

  作为复习课一方面将本章知识作一个梳理,另一方面通过整理归纳帮助学生进一步达到相应的学习目标。

  学情分析学生通过必修5的学习,对正弦定理、余弦定理的内容已经了解,但对于如何灵活运用定理解决实际问题,怎样合理选择定理进行边角关系转化从而解决三角形综合问题,学生还需通过复习提点有待进一步理解和掌握。

  教学目标知识目标:

  (1)学生通过对任意三角形边长和角度关系的探索,掌握正弦、余弦定理的内容及其证明方法;会运用正、余弦定理与三角形内角和定理,面积公式解斜三角形的两类基本问题。

  (2)学生学会分析问题,合理选用定理解决三角形综合问题。

  能力目标:

  培养学生提出问题、正确分析问题、独立解决问题的能力,培养学生在方程思想指导下处理解三角形问题的运算能力,培养学生合情推理探索数学规律的数学思维能力。

  情感目标:

  通过生活实例探究回顾三角函数、正余弦定理,体现数学来源于生活,并应用于生活,激发学生学习数学的兴趣,并体会数学的应用价值,在教学过程中激发学生的探索精神。

  教学方法探究式教学、讲练结合

  重点难点

  1、正、余弦定理的对于解解三角形的合理选择;

  2、正、余弦定理与三角形的有关性质的综合运用。

  教学策略1、重视多种教学方法有效整合;

  2、重视提出问题、解决问题策略的指导。

  3、重视加强前后知识的密切联系。

  4、重视加强数学实践能力的培养。

  5、注意避免过于繁琐的形式化训练

  6、教学过程体现“实践→认识→实践”。

  设计意图:

  学生通过必修5的学习,对正弦定理、余弦定理的内容已经了解,但对于如何灵活运用定理解决实际问题,怎样合理选择定理进行边角关系转化从而解决三角形综合问题,学生还需通过复习提点有待进一步理解和掌握。作为复习课一方面要将本章知识作一个梳理,另一方面要通过整理归纳帮助学生学会分析问题,合理选用并熟练运用正弦定理、余弦定理等知识和方法解决三角形综合问题和实际应用问题。

  数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。虽然是复习课,但我们不能一味的讲题,在教学中应体现以下教学思想:

  ⑴重视教学各环节的合理安排:

  在生活实践中提出问题,再引导学生带着问题对新知进行探究,然后引导学生回顾旧知识与方法,引出课题。激发学生继续学习新知的欲望,使学生的知识结构呈一个螺旋上升的状态,符合学生的认知规律。

  ⑵重视多种教学方法有效整合,以讲练结合法、分析引导法、变式训练法等多种方法贯穿整个教学过程。

  ⑶重视提出问题、解决问题策略的指导。

正弦教学设计2

  一、教学内容分析

  本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是初中“解直角三角形”内容的直接延拓,也是坐标法等知识在三角形中的具体运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。

  本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,学生通过对定理证明的探究和讨论,体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。

  二、学情分析

  对高一的学生来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等知识,具有一定观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约。根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。

  三、设计思想:

  培养学生学会学习、学会探究是全面发展学生能力的重要方面,也是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不仅是通过教师传授得到的,更重要的是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。本节“正弦定理”的教学,将遵循这个原则而进行设计。

  四、教学目标:

  1、在创设的问题情境中,让学生从已有的几何知识和处理几何图形的常用方法出发,探索和证明正弦定理,体验坐标法将几何问题转化为代数问题的优越性,感受数学论证的严谨性.

  2、理解三角形面积公式,能运用正弦定理解决三角形的两类基本问题,并初步认识用正弦定理解三角形时,会有一解、两解、无解三种情况。

  3、通过对实际问题的探索,培养学生的数学应用意识,激发学生学习的兴趣,让学生感受到数学知识既来源于生活,又服务与生活。

  五、教学重点与难点

  教学重点:正弦定理的探索与证明;正弦定理的基本应用。

  教学难点:正弦定理的探索与证明。

  突破难点的手段:抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生

  主体下给于适当的提示和指导。

  六、复习引入:

  1.在任意三角形行中有大边对大角,小边对小角的边角关系?是否可以把边、角关系准确量化?

  2.在ABC中,角A、B、C的正弦对边分别是a,b,c,你能发现它们之间有什么关系吗?

  结论:

  证明:(向量法)过A作单位向量j垂直于AC,由AC+CB=AB边同乘以单位向量。

  正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。

  《正弦定理》教学反思

  本节是“正弦定理”定理的第一节,在备课中有两个问题需要精心设计.一个是问题的引入,一个是定理的证明.通过两个实际问题引入,让学生体会为什么要学习这节课,从学生的“最近发展区”入手进行设计,寻求解决问题的方法.具体的思路就是从解决课本的实际问题入手展开,将问题一般化导出三角形中的边角关系——正弦定理.因此,做好“正弦定理”的教学既能复习巩固旧知识,也能让学生掌握新的有用的知识,有效提高学生解决问题的能力。

  1.在教学过程中,我注重引导学生的思维发生,发展,让学生体会数学问题是如何解决的,给学生解决问题的一般思路。从学生熟悉的直角三角形边角关系,把锐角三角形和钝角三角形的问题也转化为直角三角形的性,从而得到解决,并渗透了分类讨论思想和数形结合思想等思想。

  2.在教学中我恰当地利用多媒体技术,是突破教学难点的一个重要手段.利用《几何画板》探究比值的值,由动到静,取得了很好的效果,加深了学生的印象.

  3.由于设计的内容比较的多,教学时间的超时,这说明我自己对学生情况的把握不够准确到位,致使教学过程中时间的分配不够适当,教学语言不够精简,今后我一定避免此类问题,争取更大的进步。

正弦教学设计3

  学习目标:

  1、理解锐角正弦的意义,并会求锐角的正弦值;

  2、掌握根据锐角的正弦值及直角三角形的'一边,求直角三角形的其他边长的方法;

  3、经历锐角正弦的意义探索的过程,培养学生观察分析、类比归纳的探究问题的能力;

  学习重点:

  理解正弦(sinA)概念,知道当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实.

  学习难点:

  当直角三角形的锐角固定时,它的对边与斜边的比值是固定值的事实。

  导学过程:

  一、自学提纲:

  1.在Rt△ABC中,∠C=90°,∠A=30°,BC=10m,求AB

  2.在Rt△ABC中,∠C=90°,∠A=30°,AB=20m,求BC

  二、创设情景,提出问题:利用多媒体播放意大利比萨斜塔图片,然后老师问:比萨斜塔中条件和要探究的问题:“你能根据问题背景画出直角三角形并且利用边求出斜塔的倾斜角吗?”这就是今天我们要学习锐角三角函数(板书课题)

  三、自主学习:

  自主阅读课本74页中的问题:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数30°,为使出水口的高度为35m,那么需要准备多长的水管?

  思考1:如果使出水口的高度为50m,那么需要准备多长的水管?;如果使出水口的高度为am,那么需要准备多长的水管?。

  结论:直角三角形中,30°角的对边与斜边的比值。

  思考2:在Rt△ABC中,∠C=90°,∠A=45°,∠A对边与斜边的比值是一个定值吗?如果是,是多少?

  结论:直角三角形中,45°角的对边与斜边的比值。

  四、教师点拨:

  从上面这两个问题的结论中可知,在一个Rt△ABC中,∠C=90°,当∠A=30°时,∠A的对边与斜边的比都等于1/2,是个固定值;当∠A=45°时,∠A的对边与斜边的比都等于√2/2,也是一个固定值.这就引发我们产生这样一个疑问:当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?

  探究:任意画Rt△ABC和Rt△A′B′C′,使得∠C=∠C′=90°,∠A=∠A′=a,那么它们的对边与斜边的比有什么关系.你能解释一下吗?

  因为∠C=∠C′,∠A=∠A′,

所以△ABC∽A′B′C′

  所以BC/ B′C′=AB/ A′B′

  所以根据比例的基本性质可以得到BC/ AB= B′C/ A′B′

  结论:这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比。

  正弦函数概念:

  规定:在Rt△ABC中,∠C=90°,∠A的对边记作a,∠B的对边记作b,∠C的对边记作c。

  在Rt△BC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦,

  记作sinA,即sinA=BC/ AB

  例如,当∠A=30°时,我们有sinA=sin30°= 。

  当∠A=45°时,我们有sinA=sin45°= 。

  五、合作交流,自主展示:

  学生阅读课本例1如图,在Rt△ABC中,∠C=90°,根据图中数据,求sinA和sinB的值.

  小组成员交流,扫除障碍。

  随堂练习

  1:课本第77页练习。

  2、判断对错(学生口答)

  (1)若锐角∠A=∠B,则sinA=sinB()

  (2)sin60°=sin30°+sin30°()

  3、将Rt△ABC各边扩大100倍,则sinA的值()

  A.扩大100倍B.缩小100倍C.不变D.不确定

  4、平面直角坐标系中点P(3,- 4),OP与x轴的夹角为∠1,求sin∠1的值。

  5、在Rt△ABC中,∠C=90°,BC=6,sinA=3/5,求:AB, AC的长。

  五、课堂小结:

  1、通过本节课的学习,你学会了哪些知识;

  2、通过本节课的学习,你最大的体验是什么;

  3、通过本节课的学习,你掌握了哪些学习数学的方法?

  4、 sinA能为负吗?

  5、你能比较sin45°和sin30°的大小吗?

  六、自主拓展(提高升华)

  1、必做题:课本习题28.1第1、2、题;

  (只做与正弦函数有关的部分)

推荐文章

河南高考排名243480左右排位理科可以上哪些大学,具体能上什么大学2024-05-24 12:41:37

广西高考排名212400左右排位理科可以上哪些大学,具体能上什么大学2024-05-24 12:37:48

广东高考排名85850左右排位物理可以上哪些大学,具体能上什么大学2024-05-24 12:34:24

陕西高考排名150120左右排位理科可以上哪些大学,具体能上什么大学2024-05-24 12:30:12

福建高考排名3220左右排位历史可以上哪些大学,具体能上什么大学2024-05-24 12:26:10

河北高考排名114880左右排位物理可以上哪些大学,具体能上什么大学2024-05-24 12:22:31

二年级轴对称图形的教学设计2023-08-23 22:51:54

语文秋天的图画教学设计2023-08-21 02:38:40

长方体的表面积教学设计范文2023-08-23 18:33:49

掌声教学设计方案2023-08-23 03:50:08

二年级轴对称图形的教学设计2023-08-23 22:51:54

语文秋天的图画教学设计2023-08-21 02:38:40

长方体的表面积教学设计范文2023-08-23 18:33:49

一年级池上优秀的教学设计范文(通用五篇)2023-08-19 10:17:02

杨氏之子的教学设计模板2023-08-28 06:26:02

观察物体教学设计(苏教版国标第五册数学两篇)2023-08-19 05:04:23

最新文章

精华文章