数学六年级下册圆柱的体积教案1
教材简析:
本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。例4是圆柱的体计算公式的直接运用,是圆柱体积计算的基本,但这题又给学生设置了单位不统一的障碍,让学生在直接应用公式计算的同时注意计量单位的统一。例5是圆柱体积计算公式的扩展练习,意在让学生加深理解容积的概念,使之明确求水桶的容积就是求水桶内部的体积。例5除了在意义上扩展外,公式的运用中也有加深,水桶的底面积没有直接给出,因此要先求出水桶的底面积,再求出水桶的体积。
教学目的:
1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2.会用圆柱的体积计算圆柱形物体的体积和容积。
3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力
4.借助实物演示,培养学生抽象、概括的思维能力。
教具:圆柱体、长方体彩图各一张,圆柱的体积公式演示教具。
学具:小刀,用土豆做成的一个圆柱体。
教学过程:
一、复习铺垫
1.说说长方体的体积计算公式,正方体的体积计算公式,把这两个体积公式统一成一个又是怎样的?这个公式计算体积的物体有什么特征?
2.指出圆柱各部分的名称。说一说圆柱有多少条高?有几个底面?每个1自由的面积如何计算?这个计算公式是怎样推导出来的?
二、设疑揭题
我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。
[评析:复习抓住教学重点,瞄准学习新知识所必须的旧知识,、旧方法进行铺垫,沟通了知识之间的内在联系,衔接自然。新课引入教师引出了学习新知识的思路,导出了解决问题的方法,从而调动了学生学习的积极性,激发了学生探求新知识的欲望。
三、新课教学
1.探究推导圆柱的体积计算公式。
(l)自学第43页第二自然段,然后按照书中要求,两人一组将于中的圆柱切开拼一拼,再说一说你拼成三个近似什么形状的立方体?
(2)请学生演示教具,学生边演示边讲解切割拼合过程。
(3)根据学生讲解,出示圆柱和长方体的彩图。
(4)学生观察两个立体图,找出两图之间有哪些部分是相等的?
(5)依据长方体的体积计算公式推导出圆柱的体积计算公式。板书:V=sh
(6)要用这个公式计算圆柱的体积必须知道什么条件?
[评析:在教学中充分让学生动手、动脑、动口,让学生在操作中感知,在观察中理解,在比较中归纳。教师的导、放、扶层次分明,充分体现了教师的主导作用和学生的主体作用。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力]
2.教学例4
(1)出示例4。
(2)默读题目,看题目告诉了什么条件?要求什么?想一想你将如何计算?谁愿意试一试?
(3)请一名同学板演,其余同学在作业本上做。
(4)板演的同学讲解自己的解题方法,说一说在做这道题的过程中遇到了什么问题,是怎样解决的?
(5)教师归纳学生所用的解题方法。强调在解题的过程中要注意单位统一。
3.教学例5
(1)请同学们想一想,如果已知圆柱底面的半径rt和高h,怎样求圆柱的体积?请学生自学并填写第44页第一自然段的空白部分。
(2)出示例5,指名读题。请同学们思考解题方法。
(3)请学生讲解题思路讨论、归纳统一的解题方法。
(4)让学生按讨论的方法做例5。
(5)教师评讲、总结方法。
(6)学生讨论。比较例4、例5有哪些相同和不同点。
[评析:引导学生通过实际操作,由观察、分析、比较,再进行计算,达到运用新知、巩固新知的目的。]
四、新知应用
1.做第44页下面做一做的题目。两人板演,其余在自己作业本主做,做完后及时反馈练习中出现的错误,并加以评讲。
2.刚才同学们在做例4时,还有下面几种解法,请大家仔细思考,这些解法是对还是错?试说明理由。
(1)V=sh=5O2.1=105
答:它的体积是105立方厘米
(2)2.l米=210厘米
V=sh=50210=10500
答:它的体积是10500立方厘米。
(3)50立方厘米=0.5立方米
V=sh=0.52.1=1.05(立方米)
答:它的体积是l.05立方米。
(4)50平方厘米=0.005平方米。
V=0。00521=0.01051
答:它的体积是0.01051(立方米)。
五、全课总结
问:这节课里我们学到了哪些知识?根据学生回答教师总结。
六、学生作业
练习十一的第l、2题。
[总结实:本节课的教学体现了三个主要特点:
一、利用迁移规律引入新课,为学生创设良好的学习情境;二、遵循学生的认知规律,引导学生操作、观察、思考、说理,调动多种感观参与学习;
三、正确处理两主关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好。总之,本节课教师引导得法,学生学得灵活,体现了重在思,贵在导,导思结合的原则,体现了教是为了不教,学会是为了会学的素质教育思想。
数学六年级下册圆柱的体积教案2
教学目标:
1、知识技能
运用迁移规律,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2、过程方法
让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3、情感态度价值观
通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:
圆柱体体积的计算公式的推导过程及其应用。
教学难点:
理解圆柱体体积公式的推导过程。
教学准备:圆柱体积公式推导演示学具、多媒体课件。
教学过程:
一、复习导入
同学们,我们的图形世界十分丰富,回忆一下,什么叫做物体的体积?我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体
的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?
二、图柱转化,自主探究,验证猜想。
(一)猜想。
1、大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形,推导圆面积公式的过程。)
[数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师由复习圆面积公式的推导过程入手,实现知识的迁移。]
2、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?揭示课题:圆柱的体积。
(二)操作验证。
1、请学生拿出圆柱体的演示学具,以小组为单位,联想圆形面积的转化方式,合作探究将圆柱转化为长方体的方法。
在操作时,学生分组边操作边讨论以下问题:
①拼成的近似长方体的体积与原来的圆柱体积有什么关系?
②拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?
?.拼成的近似长方体的高与原来的圆柱的高有什么关系?
2、小组代表汇报
(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)
3、电脑演示操作
(1)电脑演示圆柱体转化成长方体的过程:
仔细观察:圆柱体转化成一个长方体后,长方体的长相当于圆柱的什么?长方体的宽和高又相当于圆柱的什么?
动画演示:把圆柱的底面平均分成32份、64份,切开后拼成的物体会有什么变化?
(分的分数越多,拼成的图形就越接近长方体)
(2)根据学生的观察、分析、推想,老师完成板书:
长方体的体积=底面积×高
圆柱的体积=底面积×高
V=Sh
(3)你的猜想正确吗?学生齐读圆柱的体积计算公式。
三、练习巩固,灵活应用
闯关1.一根圆柱形钢材,底面积是75平方厘米,长是90厘米。它的体积是多少?
让学生试做,集体反馈。
闯关2.想一想:如果已知圆柱底面的半径(r)和高(h),圆柱的体积的计算公式是什么?如果已知圆柱底面的直径(d)和高(h)呢?如果已知圆柱的底面周长(C)和高(h)呢?
学生讨论、交流、汇报。
小结:解决以上问题的关键是先求出什么?(生:底面积)
闯关3.下面这个杯子能不能装下这袋奶?(杯子的数据是从里面测量得到的。)学生在练习本上独立完成,集体反馈。
四、课堂小结
学习本节课你有哪些收获?还有哪些疑惑?(生汇报收获)
五、布置作业
教科书第21页练习三第1-4题。
板书设计:
圆柱的体积
长方体的体积=底面积×高
圆柱的体积=底面积×高
V=Sh
数学六年级下册圆柱的体积教案3
教学目标:
1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、进一步提高学生解决问题的能力。
教学重、难点:
1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、理解圆柱体积公式的推导过程。
教学准备:圆柱切割组合模具、小黑板。
教学过程:
一、创设情境,生成问题
1、什么是体积?(物体所占空间的大小叫做物体的体积。)
2、长方体的体积该怎样计算?归纳到底面积乘高上来。
3、圆的面积怎样计算?
二、探索交流,解决问题
1、计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体图形来计算它的体积?
(启发学生思考。)
2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。
3、思考:
(1)圆柱切开后可以拼成一个什么形体?(长方体)
(2)通过实验你发现了什么?
小组讨论:实验前后,什么变了?什么没变?
讨论后,整理出来,再进行汇报。
(拼成的近似长方体体积大小没变,形状变了,拼成的近似长方
体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方形的高就是圆柱的高,没有变化。)
4、推导圆柱体积公式
小组讨论:怎样计算圆柱的体积?
学生汇报讨论结果。
长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。
师:圆柱的体积怎样计算?用字母公式,怎样表示?
板书:V=Sh
5、算一算:已知一根柱子的底面半径为0.4米,高为5米。你能算出它的体积吗?
三、巩固应用练习。
1、一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,
这个水桶的容积是多少升?
说明:求水桶的容积,就是求水桶的体积。想一想先求什么?
2、一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?
先求底面半径再求底面积,最后求体积。
已知底面周长对解决问题有什么帮助吗?必须先求出什么?四:课堂小结:
通过这节课你学会了哪些知识,有什么收获?五:课后作业:
教材第9页,练一练第1、3、4、题
数学六年级下册圆柱的体积教案4
教学内容:
人教版小学数学六年级下册《圆柱的体积》P25-26。
教学目标:
1.经历探究和推导圆柱的体积公式的过程。
2.知道并能记住圆柱的体积公式,并能运用公式进行计算。
3.在自主探究圆柱的体积公式的过程中,体验、感悟数学规律的来龙去脉,知道长方体与圆柱体底面和高各部分间的对应关系。发展学生的观察能力和分析、综合、归纳推理能力。
4.激发学生的学习兴趣,让学生体验成功的快乐。
5.培养学生的转化思想,渗透辩证法和极限的思想。
教学重点:掌握和运用圆柱体积计算公式
教学难点:圆柱体积公式的推导过程
教具学具准备:教学课件、圆柱体。
教学过程:
一、复习导入
1.同学们想一想,我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?
2.回忆一下圆面积的计算公式是如何推导出来的?
(结合课件演示)这是一个圆,我们把它平均分割,再拼合就变成了一个近似的平行四边形。我们还可以往下继续分割,无限分割就变成了一个长方形。长方形的长相当于圆周长的一半,可以用πR表示,长方形的宽就当于圆的半径,用R表示。所以用周长的一半×半径就可以求出圆的面积,所以推导出圆的面积公式是S=πR。
3.课件出示一个圆柱体
我们把圆转化成了近似的长方形,同学们猜想一下圆柱可以转化成什么图形呢?
二、探索体验
1.学生猜想可以把圆柱转化成什么图形?
2.课件演示:把圆柱体转化成长方体
①是怎样拼成的?
②观察是不是标准的长方体?
③演示32等份、64等份拼成的长方体,比较一下发现了什么?引出课题并板书。
3.借鉴圆的面积公式的推导过程试着推导圆柱的体积公式。
课件出示要求:
①拼成的长方体与原来的圆柱体比较什么变了?什么没变?
②推导出圆柱体的体积公式。
学生结合老师提出的问题自己试着推导。
4.交流展示
小组讨论,交流汇报。
生汇报师结合讲解板书。
圆柱体积=底面积×高
‖‖‖
长方体体积=底面积×高
用字母公式怎样表示呢?v、s、h各表示什么?
5.知道哪些条件可以求出圆柱的体积?
6.计算下面圆柱的体积。
①底面积24平方厘米,高12厘米
②底面半径2厘米,高5厘米
③直径10厘米,高4厘米
④周长18.84厘米,高12厘米
三、课堂检测
1.判断
①圆柱体、长方体和正方体的体积都可以用底面积乘高的方法来计算。()
②圆柱的底面积扩大3倍,体积也扩大3倍。()
③一个长方体与一个圆柱体底面积相等,高也相等,那么它们的体积也相等。()
④圆柱体的底面直径和高可以相等。()
⑤两个圆柱体的底面积相等,体积也一定相等。()
⑥一个圆柱形的水桶能装水15升,我们就说水桶的体积是15立方分米。()
2.联系生活实际解决实际问题。
下面的这个杯子能不能装下这袋奶?
(杯子的数据从里面量得到直径8cm,高10cm;牛奶498ml)
学生独立思考回答后自己做在练习本上。
3.一个压路机的前轮是圆柱形,轮宽2米,半径1米,它的体积是多少立方米?
4.生活中的数学
一个用塑料薄膜盖的蔬菜大棚,长15米,横截面是一个半径2米的半圆。
①覆盖在这个大棚上的塑料薄膜约有多少平方米?
②大棚内的空间大约有多大?
独立思考后小组讨论,两生板演。
四、全课总结
这节课你有什么收获?
五、课后延伸
如果要测量圆柱形柱子的体积,测量哪些数据比较方便?试一试吧?
六、板书设计
圆柱体积=底面积×高
长方体体积=底面积×高
数学六年级下册圆柱的体积教案5
一、教学内容:人教版教材六年级下册19——20页例5例6及相关的练习题。
二、教学目标:
1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2、经历“类比猜想——验证说明”的探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积。并会解决一些简单的实际问题。
3、注意渗透类比、转化思想。
三、教学重点:理解、掌握圆柱体积计算的公式,能运用公式正确地计算圆柱的体积。
四、教学难点:推导圆柱的体积计算公式。
五、教法要素:
1、已有的知识和经验:体积、体积单位,学习长方体正方体的体积公式的经验。
2、原型:圆柱模型。
3、探究的问题:
(1)圆柱的体积和什么有关?圆柱能否转化成已学过的立体图形来计算体积?
(2)把圆柱拼成一个近似的长方体后,长方体的长、宽、高是圆柱的哪个
部分?
(3)怎样计算圆柱的体积?
六、教学过程:
(一)唤起与生成。
1、什么叫物体的体积?我们学过哪些立体图形的体积计算?
2、长方体和正方体的体积怎样计算?它们可以用一个公式表示出来吗?
切入教学:怎样计算圆柱的体积?圆柱的体积计算会和什么有关?
(二)探究与解决。
探究:圆柱的体积
1、提出问题,启发思考:如何计算圆柱的体积?
2、类比猜测,提出假设:结合长方体和正方体体积计算的知识,即长方
体和正方体的体积都等于底面积×高,据此分析并猜测圆柱的`体积与谁有关,有什么关系;提出假设,圆柱的体积可能等于底面积×高。
3、转化物体,分析推理:
怎样来验证我们的猜想?我们在学圆的面积时是把圆平均分成若干份,然后拼成一个近似的长方形,推导出圆的面积计算公式。我们能不能也把圆柱转化为我们学过的立体图形呢?应该怎样转化?结合圆的面积计算小组讨论。学生汇报交流。
(拿出平均分好的圆柱模型,圆柱的底面用一种颜色,圆柱的侧面用另一种颜色,以便学生观察。)现在利用这个圆柱模型小组合作把它转化为我们学过的立体图形。学生在小组合作后汇报交流。
4、全班交流,公式归纳:
交流时,要学生说明拼成的长方体与原来的圆柱有什么关系?圆柱的底面积和拼成的长方体的底面积有什么关系?拼成的长方体的高和圆柱的高有什么关系?引导学生推导出圆柱的体积计算方法。圆柱的体积=底面积×高。(在这一过程中,使学生认识到:把圆柱平均分成若干份切开,可以拼成近似的长方体,这样“化曲为直”,圆柱的体积就转化为长方体的体积,分的份数越多,拼起来就越接近长方体,渗透“极限”思想。)教师板书计算公式,并用字母表示。
回想一下,刚才我们是怎样推导出圆柱的体积计算公式的?
5、举一反三,应用规律:
(1)你能用这个公式解决实际问题吗?20页做一做,学生独立完成,全班订正。
如果我们只知道圆柱的半径和高,你能不能求出圆柱的体积?引导学生推导出V=∏r2h
(2)教学例6
学生审题之后,引导学生思考:解决这个问题就是要计算什么?然后指出求杯子的容积就是求这个圆柱形杯子可容纳东西的体积,计算方法跟圆柱体积的计算方法一样,再让学生独立解决。反馈时,要引导学生交流自己的解题步骤,着重说明杯子内部的底面积没有直接给出,因此先要求底面积,再求杯子的容积。
(三)训练与强化。
1、基本练习。
练习三第1题,学生独立完成,这两个都可以直接用V=sh来计算。全班订正,注意培养学生良好的计算习惯。
2、变式练习。
第2题,这题中给的条件不同,不管是知道半径还是直径,我们都要先求出底面积,再求体积。学生独立完成,在交流时,注意计算方法的指导。
第3题。求装多少水,实际是求这个水桶的容积。学生独立完成,全班交流。水是液体,单位应用毫升或升。
3、综合练习。
第5题。这题中知道了圆柱的体积和底面积求高,引导学生推出h=V÷s,如果有困难,也可列方程解答。学生独立完成,有困难的小组交流。
4、提高性练习。22页第10题,学生先小组讨论,再全班交流。
(四)总结与提高。
这节课我们是怎样推导出圆柱体积的计算方法的?圆柱和长方体、正方体在形体上有什么相同的地方?像这样上下两个底面一样,粗细不变的立体图形叫做直柱体,直柱体的体积都可以用底面积×高计算。出示几个直柱体(例:三棱柱、钢管等),让学生计算出他们的体积。
数学六年级下册圆柱的体积教案6
教学内容:
九年义务教育六年制第十二册第36~37页例4、例5及做一做,练习八的第1、2题。
教学目标:
1、理解圆柱体体积公式的推导过程,并会正确地计算出圆柱的体积。
2、培养学生的迁移能力、逻辑思维能力,并进一步发展空间观念。
3、引导学生探索和解决问题,体验转化及极限的思想方法。
教学重点:圆柱体体积的计算.
教学难点:理解圆柱体体积公式的推导过程.
教具:多媒体课件、圆柱形容器、水、橡皮泥。
教学过程:
一、激凝导入
师:大家都知道,水是生命之源!我们要养成节约用水的好习惯。可前两天,老师家的水龙头出了问题,你们看,一刻钟就滴了这么多水。(出示装有水的圆柱容器。)
(1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积吗?你能想什么办法知道它的体积?
(2)生回答。
2、出示橡皮泥捏成的圆柱体。
那你有办法求出这个圆柱体橡皮泥的体积吗?
生(热情的):老师将它捏成长方体或正方体就可以了!
3、创设问题情境。
师小结:这么说同学们都有办法将一些圆柱形的物体转化为长方形或正方体来求它们的体积,大家真了不起!那如果我们要求某些建筑如(出示课件:人民大会堂东门前的门柱和压路机大前轮)雄伟的人民大会堂东门前的一个圆柱形门柱的体积,或者求压路机圆柱形大前轮的体积,还能用刚才同学们想出来的办法吗?(不能)
那怎么办?
学生试说出自己的办法。
师:看起来前面这些方法虽然可行,但有一定的局限性,我们必须找到一个解决任意圆柱体积的方法才行,是不是?今天,就让我们来共同研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)
二、经历体验、探究新知
1、推导圆柱的体积公式。
师:你们打算怎么去研究圆柱的体积?
小组同学讨论研究的方法。
2、学生动手操作感知
(1)学生以小组为单位操作体验。(操作学具,进行拼组)。
(2)学生小组汇报交流:
近似长方体的体积等于圆柱的体积;近似长方体的底面积等于圆柱的底面积;近似长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱体的体积也等于底面积乘高。
(3)想像:如果把圆柱像这样等分成32份、64、128份后再拼起来,会怎么样?有怎样的变化趋势?分成无数份呢?(平均分的份数越多,拼起来的近似长方体的长越近似于直线,这样整个图形越近似于长方体。如果照这样分成无限多份,拼出的图形就是长方体)
3、教师课件演示圆柱转化成长方体的过程。
4、师生共同推导出圆柱的体积公式:
长方体的体积=底面积高
圆柱的体积=底圆柱面积高
V=Sh
5、巩固公式
①V、S、h各表示什么?
②知道哪些条件就可以求圆柱的体积?
а、知道底面积和高可以直接用公式计算圆柱的体积;
b、知道底面半径和高,可以先计算出底面积,再计算体积;
c、知道底面直径和高,要先算出半径,再算出底面积,最后才能计算出圆柱的体积。
学生回答后师板书。
6、教学例4、例5。
课件分别出示例4、例5,让学生找出题中的条件和问题,然后独立完成,集体订正。
三、实践练习
1、出示课件:人民大会堂东门前的门柱和压路机大前轮的有关数据求出它的体积。
2、拓展延伸:同学们到工厂参加社会实践。工人师傅拿出一块长、宽、高分别是6厘米、5厘米、4厘米的长方体,问:同学们,现在我们要把这块木料加工成一个体积最大的圆柱体,你们想一想,圆柱的底面直径和高应是多少?小林想了想说:我知道了。
同学们,你们知道小林是怎样想的吗?
四、课堂总结;
通过本节课的学习,你有什么收获?
数学六年级下册圆柱的体积教案7
教学内容:
教材第15~16页的例4和第16页的试一试、练一练,完成练习三第1~3题。
教学目标:
1.结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2.经历类比猜想验证说明的探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3.引导学生探索和解决问题,渗透、体验知识间相互转化的思想方法。
重点难点:
掌握圆柱体积公式的推导过程。
教学资源:
PPT课件圆柱等分模型
教学过程:
一、联系旧知,设疑激趣,导入新课。
1.呈现例4中长方体、正方体和圆柱的直观图。
2.提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积?
启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱体积的大小与什么有关?怎么算?
3.引入:我们的猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。
二、动手操作,探索新知,教学例4
1.观察比较
引导学生观察例4的三个立体,提问
⑴这三个立体的底面积和高都相等,它们的体积有什么关系?
⑵长方体和正方体的体积一定相等吗?为什么?
⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?
2.实验操作
⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。
提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?
⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的圆柱,操作一下。
⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?
操作教具,让学生观察。
引导想像:如果把底面平均分的份数越来越多,结果会怎么样?
演示一组动画(将圆柱底面等分成32份、64等份、128等份)课件演示使学生清楚地认识到:拼成的立体会越来越接近长方体。
3.推出公式
⑴提问:拼成的长方体与原来的圆柱有什么关系?
指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。
⑵想一想:怎样求圆柱的体积?为什么?
根据学生的回答小结并板书圆柱的体积公式
圆柱的体积=底面积高
⑶引导用字母公式表示圆柱的体积公式:V=sh
长方体的体积=底面积高
圆柱的体积=底面积高
用字母表示计算公式V=sh
三、分层练习,发散思维,教学试一试
⑴让学生列式解答后交流算法。
⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?
(s和h,r和h,d和h,c和h)
四、巩固拓展练习
1.做练一练第1题。
⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?
⑵各自练习,并指名板演。
⑶对照板演,说说计算过程。
2.做练一练第2题。
已知底面周长和高,该怎么求它的体积呢?引导学生根据底面周长求出底面积。
五、小结
这节课我们学习了什么?有哪些收获?还有什么疑问?
六、作业
练习三第1~3题。
数学六年级下册圆柱的体积教案8
教学内容:
北师大版教学六年级《圆柱的体积》
教学目标:
1、结合具体的情境和实践活动,理解圆柱体体积的含义。
2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、培养学生初步的空间观念和思维能力;
教学重点:
理解和掌握圆柱的体积计算公式,会求圆柱的体积。
教学难点:
理解圆柱体积计算公式的推导过程。
教具准备:
圆柱体积演示教具。
教学过程:
一、旧知铺垫
1、谈话引入
最近我们认识了圆柱和圆锥,还学会了计算圆柱的表面积。现在请看老师的这个圆柱形杯子和这个圆柱比较,谁大?这里所说的大小实际是指它们的什么?(生答)
2、提出问题:什么叫体积?我们学过那些图形的体积?怎么算的?(生答师随之板书)
这节课我们就来学习圆柱的体积。
二、自主探究,解决问题
(一)认识圆柱体积的意义。
圆柱的体积到底是指什么?谁能举例说呢?
(二)圆柱体积的计算公式的推导。
1、我们学过长方体和正方体体积的计算,圆柱体的体积跟什么有关呢?你会有怎样的猜想?(小组内说说)
2、回忆圆面积的推导过程。
3、教具演示。
(1)取圆柱体模型。
(2)将圆柱体切成两半。
(3)分别将两半均分成若干小块。
(4)动手拼成一个近似的长方体。
(三)归纳公式。
(板书:圆柱的体积=底面积高)
用字母表示:(板书:V=Sh)
三、巩固新知
1、这个杯子的底面半径为6厘米,高为16厘米,它的体积是多少?
审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。
现在这个杯子装了2/3的水,装了多少水呢?
2、完成试一试
3、跳一跳:统一直柱体的体积的计算方法。
四、课堂总结、拓展延伸
这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?这个公式适合哪些图形?他们有什么共同特点?
五、布置作业
练一练1-5题。
数学六年级下册圆柱的体积教案9
设计说明
本节课是在学生已经了解了圆柱的特征,掌握了长方体体积的计算方法以及圆的面积计算公式的推导过程的基础上进行教学的。根据学生的认知水平和已有经验,本节课在教学设计上体现了以下几个特点:
1.创设问题情境,点燃探索激情。
基于“数学来源于生活,又应用于生活”这一理念,教学过程中通过呈现身边圆柱的体积问题,使学生感受到数学与现实生活的密切联系,认识到学习圆柱的体积计算公式的必要性,从而激发了学生的探究兴趣,使学习成为学生自觉的需求。
2.注重直观教学,引导合作迁移。
数学理论的表述往往是抽象的,它影响了学生数学思维的发展,而引导学生从观察和分析有关具体实物入手,就比较容易理解概念的本质特征。所以,教学中不但设计了通过排水法理解圆柱体积的实验,而且还借助教具演示、课件演示等直观教学手段帮助学生推导出圆柱体积的计算公式,使学生从感性认识上升到理性认识,体会到知识的由来。
3.渗透数学思想,发展数学思考。
在本节课的教学中,充分利用教材内容,对学生有效地进行转化思想的渗透,使学生在体会运用转化思想可以化难为易、化复杂为简单、化生疏为熟悉等作用的同时,参与数学活动,提高解决问题的能力。
课前准备
教师准备PPT课件
学生准备圆柱形实物
教学过程
⊙情境引入
1.操作感知体积的意义。
通过出示一个装了半杯水的烧杯,引导学生猜测:在烧杯中投入一个圆柱形物体,会有什么现象发生?
(水面升高或者水会溢出来)
师:为什么会有这种现象发生?
预设
生1:圆柱占有一定的空间。
生2:圆柱占据了原来水占有的空间。
生3:圆柱是立体图形,它具有一定的体积。
2.讨论、概括圆柱的体积的意义。
师:你认为什么是圆柱的体积?
(圆柱所占空间的大小,叫做圆柱的体积)
3.引入:这节课我们就一起来探究圆柱体积的计算方法。
(板书课题:圆柱的体积)
设计意图:通过操作、演示,使学生在猜测、观察、讨论中加深对抽象的“体积”概念的理解,自主概括出圆柱的体积的意义,为下面的探究活动做好充分的准备。
⊙自主探究
1.探究影响圆柱的体积大小的相关因素。
(1)课件出示两个大小不等的圆柱。
师:哪个圆柱的体积比较大?为什么?
预设
生1:左面的圆柱的体积比较大,因为它高一些。
生2:右面的圆柱的体积比较大,因为它粗一些。
生3:不好比较。因为左面的圆柱虽然高,但比较细;右面的圆柱虽然粗,但比较矮。
(2)讨论、概括。
师:圆柱的体积的大小与哪些因素有关?
(圆柱的体积的大小与圆柱的高及圆柱的底面积的大小有关)
推荐文章
河南高考排名195560左右排位理科可以上哪些大学,具体能上什么大学2024-06-08 12:22:13
吉林外国语大学和湘潭大学兴湘学院哪个好 附对比和区别排名2024-06-08 12:17:15
江西工商职业技术学院在黑龙江高考历年录戎数线(2024届参考)2024-06-08 12:13:44
甘肃高考排名5480左右排位理科可以上哪些大学,具体能上什么大学2024-06-08 12:10:50
四川文化艺术学院和天津城建大学哪个好 附对比和区别排名2024-06-08 12:07:58
江西高考排名71510左右排位理科可以上哪些大学,具体能上什么大学2024-06-08 12:05:17
课文山中访友教案范文三篇2023-08-13 10:58:35
保安员辞职申请2023-08-17 16:55:40
有关小班教案四篇2023-08-27 14:19:55
酒店年会表彰主持词(精选六篇)2023-08-12 16:01:19
课文山中访友教案范文三篇2023-08-13 10:58:35
有关小班教案四篇2023-08-27 14:19:55
幼儿园大班社会优秀教案垃圾“回家”含反思2023-08-20 11:42:14
中班科学公开课教案及教学反思和电池做游戏2023-08-10 20:35:16
找最小公倍数教学教案2023-08-12 04:35:17
爬天都峰优秀教案设计2023-08-25 06:33:44